# elementwise_pow¶

`paddle.fluid.layers.``elementwise_pow`(x, y, axis=-1, act=None, name=None)[source]

Elementwise Pow Operator.

First tensor elements raised to powers from the second tensor, element-wise.

The equation is:

\$\$Out = X ^ Y\$\$

• \(X\): a tensor of any dimension.

• \(Y\): a tensor whose dimensions must be less than or equal to the dimensions of \(X\).

There are two cases for this operator:

1. The shape of \(Y\) is the same with \(X\).

2. The shape of \(Y\) is a continuous subsequence of \(X\).

For case 2:

1. Broadcast \(Y\) to match the shape of \(X\), where \(axis\) is the start dimension index for broadcasting \(Y\) onto \(X\).

2. If \(axis\) is -1 (default), \(axis = rank(X) - rank(Y)\).

3. The trailing dimensions of size 1 for \(Y\) will be ignored for the consideration of subsequence, such as shape(Y) = (2, 1) => (2).

For example:

```shape(X) = (2, 3, 4, 5), shape(Y) = (,)
shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
```
Parameters
• x – (Variable), The Base.

• y – (Variable), The exponents.

• axis (int32, optional) – If X.dimension != Y.dimension, Y.dimension must be a subsequence of x.dimension. And axis is the start dimension index for broadcasting Y onto X.

• act (string, optional) – Activation applied to the output. Default is None. Details: Activation Function

• name (string, optional) – Name of the output. Default is None. It’s used to print debug info for developers. Details: Name

Returns

N-dimension tensor. A location into which the result is stored. It’s dimension equals with x

Examples

```import paddle.fluid as fluid
import numpy as np

def gen_data():
return {
"x": np.array([2, 3, 4]).astype('float32'),
"y": np.array([1, 5, 2]).astype('float32')
}

x = fluid.data(name="x", shape=[3], dtype='float32')
y = fluid.data(name="y", shape=[3], dtype='float32')
z = fluid.layers.elementwise_pow(x, y)

place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])

print(z_value) #[2, 243, 16]
```