scatter¶
-
paddle.distributed.collective.
scatter
( tensor, tensor_list=None, src=0, group=0 ) [source] -
Scatter a tensor to all participators.
- Parameters
-
tensor (Tensor) – The output Tensor. Its data type should be float16, float32, float64, int32 or int64.
tensor_list (list) – A list of Tensors to scatter. Every element in the list must be a Tensor whose data type should be float16, float32, float64, int32 or int64.
src (int) – The source rank id.
group (int) – The id of the process group to work on.
- Returns
-
None.
Examples
import numpy as np import paddle from paddle.distributed import init_parallel_env paddle.set_device('gpu:%d'%paddle.distributed.ParallelEnv().dev_id) init_parallel_env() if paddle.distributed.ParallelEnv().local_rank == 0: np_data1 = np.array([7, 8, 9]) np_data2 = np.array([10, 11, 12]) else: np_data1 = np.array([1, 2, 3]) np_data2 = np.array([4, 5, 6]) data1 = paddle.to_tensor(np_data1) data2 = paddle.to_tensor(np_data2) if paddle.distributed.ParallelEnv().local_rank == 0: paddle.distributed.scatter(data1, src=1) else: paddle.distributed.scatter(data1, tensor_list=[data1, data2], src=1) out = data1.numpy()