natural_exp_decay¶
- paddle.fluid.layers.learning_rate_scheduler. natural_exp_decay ( learning_rate, decay_steps, decay_rate, staircase=False ) [source]
-
Applies natural exponential decay to the initial learning rate.
When training a model, it is often recommended to lower the learning rate as the training progresses. By using this function, the learning rate will be decayed by natural exponential power ‘decay_rate’ every ‘decay_steps’ steps.
Decayed learning rate calculates as follows:
>>> if not staircase: >>> decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps)) >>> else: >>> decayed_learning_rate = learning_rate * exp(- decay_rate * floor(global_step / decay_steps))
- Args:
-
- learning_rate(Variable|float): The initial learning rate. It should be a Variable
-
or a float
decay_steps(int): The learning rate decay steps. See the decay computation above. decay_rate(float): The learning rate decay rate. See the decay computation above. staircase(bool): If True, decay the learning rate at discrete intervals, which
means the learning rate will be decayed by natural exponential power decay_rate every decay_steps. If False, learning rate will be decayed continuously and following the formula above. Default: False
- Returns:
-
The decayed learning rate. The data type is float32.
- Examples:
-
import paddle.fluid as fluid import paddle paddle.enable_static() base_lr = 0.1 sgd_optimizer = fluid.optimizer.SGD( learning_rate=fluid.layers.natural_exp_decay( learning_rate=base_lr, decay_steps=10000, decay_rate=0.5, staircase=True))