log_loss¶
-
paddle.nn.functional.
log_loss
( input, label, epsilon=0.0001, name=None ) [source] -
Negative Log Loss Layer
This layer accepts input predictions and target label and returns the negative log loss.
\[\begin{split}Out = -label * \\log{(input + \\epsilon)} - (1 - label) * \\log{(1 - input + \\epsilon)}\end{split}\]- Parameters
-
input (Tensor|list) – A 2-D tensor with shape [N x 1], where N is the batch size. This input is a probability computed by the previous operator. Data type float32.
label (Tensor|list) – The ground truth which is a 2-D tensor with shape [N x 1], where N is the batch size. Data type float32.
epsilon (float, optional) – A small number for numerical stability. Default 1e-4.
name (str|None) – For detailed information, please refer to Name . Usually name is no need to set and None by default.
- Returns
-
Tensor, which shape is [N x 1], data type is float32.
Examples
import paddle import paddle.nn.functional as F label = paddle.randn((10,1)) prob = paddle.randn((10,1)) cost = F.log_loss(input=prob, label=label)