Limit the l2 norm of multi-dimensional Tensor $$X$$ to clip_norm .

• If the l2 norm of $$X$$ is greater than clip_norm , $$X$$ will be compressed by a ratio.

• If the l2 norm of $$X$$ is less than or equal to clip_norm , nothing will be done.

The multidimensional Tensor $$X$$ is not passed from this class, but the gradients of all parameters set in optimizer. If need_clip of specific param is False in its ParamAttr, then the gradients of this param will not be clipped.

Gradient clip will takes effect after being set in optimizer , see the document optimizer (for example: SGD).

The clipping formula is:

$\begin{split}Out = \left\{ \begin{array}{ccl} X & & if (norm(X) \leq clip\_norm) \\ \frac{clip\_norm*X}{norm(X)} & & if (norm(X) > clip\_norm) \\ \end{array} \right.\end{split}$

where $$norm(X)$$ represents the L2 norm of $$X$$.

$norm(X) = ( \sum_{i=1}^{n}|x\_i|^2)^{ \frac{1}{2}}$

Note

need_clip of ClipGradByNorm HAS BEEN DEPRECATED since 2.0. Please use need_clip in ParamAttr to speficiy the clip scope.

Parameters

clip_norm (float) – The maximum norm value.

Examples

import paddle

x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')