PReLU¶
-
class
paddle.nn.
PReLU
( num_parameters=1, init=0.25, weight_attr=None, name=None ) [source] -
PReLU Activation.
\[PReLU(x) = max(0, x) + weight * min(0, x)\]- Parameters
-
num_parameters (int, optional) – Number of weight to learn. The supported values are: 1 - a single parameter alpha is used for all input channels; Number of channels - a seperate alpha is used for each input channel. Default is 1.
init (float, optional) – Init value of learnable weight. Default is 0.25.
weight_attr (ParamAttr, optional) – The parameter attribute for the learnable weight. Default is None. For more information, please refer to api_paddle_ParamAttr.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Shape:
-
input: Tensor with any shape. Default dtype is float32.
output: Tensor with the same shape as input.
Examples
import paddle import numpy as np paddle.set_default_dtype("float64") data = np.array([[[[-2.0, 3.0, -4.0, 5.0], [ 3.0, -4.0, 5.0, -6.0], [-7.0, -8.0, 8.0, 9.0]], [[ 1.0, -2.0, -3.0, 4.0], [-5.0, 6.0, 7.0, -8.0], [ 6.0, 7.0, 8.0, 9.0]]]], 'float64') x = paddle.to_tensor(data) m = paddle.nn.PReLU(1, 0.25) out = m(x) # [[[[-0.5 , 3. , -1. , 5. ], # [ 3. , -1. , 5. , -1.5 ], # [-1.75, -2. , 8. , 9. ]], # [[ 1. , -0.5 , -0.75, 4. ], # [-1.25, 6. , 7. , -2. ], # [ 6. , 7. , 8. , 9. ]]]]
-
forward
( x ) -
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments
-
extra_repr
( ) -
Extra representation of this layer, you can have custom implementation of your own layer.