# layer_norm¶

paddle.static.nn. layer_norm ( input, scale=True, shift=True, begin_norm_axis=1, epsilon=1e-05, param_attr=None, bias_attr=None, act=None, name=None ) [source]
Api_attr

Static Graph

Layer Normalization Layer

The API implements the function of the Layer Normalization Layer and can be applied to mini-batch input data. Refer to Layer Normalization

The formula is as follows:

\begin{align}\begin{aligned}\begin{split}\\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i\end{split}\\\begin{split}\\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}\end{split}\\\begin{split}y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)\end{split}\end{aligned}\end{align}
• $$x$$: the vector representation of the summed inputs to the neurons in that layer.

• $$H$$: the number of hidden units in a layers

• $$\\epsilon$$: the small value added to the variance to prevent division by zero.

• $$g$$: the trainable scale parameter.

• $$b$$: the trainable bias parameter.

Parameters
• input (Tensor) – A multi-dimension Tensor , and the data type is float32 or float64.

• scale (bool, optional) – Whether to learn the adaptive gain $$g$$ after normalization. Default: True.

• shift (bool, optional) – Whether to learn the adaptive bias $$b$$ after normalization. Default: True.

• begin_norm_axis (int, optional) – The normalization will be performed along dimensions from begin_norm_axis to rank(input). Default: 1.

• epsilon (float, optional) – The small value added to the variance to prevent division by zero. Default: 1e-05.

• param_attr (ParamAttr, optional) – The parameter attribute for the learnable gain $$g$$. If scale is False, param_attr is omitted. If scale is True and param_attr is None, a default ParamAttr would be added as scale. The param_attr is initialized as 1 if it is added. Default: None.

• bias_attr (ParamAttr, optional) – The parameter attribute for the learnable bias $$b$$. If shift is False, bias_attr is omitted. If shift is True and param_attr is None, a default ParamAttr would be added as bias. The bias_attr is initialized as 0 if it is added. Default: None.

• act (str, optional) – Activation to be applied to the output of layer normalization. Default: None.

• name (str) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name .

Returns

Tensor indicating the normalized result, the data type is the same as input , and the return dimension is the same as input .

Return type

Tensor

Examples

import paddle