You need to enable JavaScript to run this app.
\u200E
开始使用
特性
文档
API
使用指南
工具平台
工具
AutoDL
develop
2.0
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0
0.15.0
0.14.0
0.13.0
0.12.0
0.11.0
0.10.0
中文(简)
English(En)
Installation Manuals
Install via pip
Install on Linux via PIP
Install on MacOS via PIP
Install on Windows via PIP
Install via conda
Installation on Linux via Conda
Installation on MacOS via Conda
Installation on Windows via Conda
Install via docker
Install on Linux via Docker
Install on MacOS via Docker
Compile From Source Code
Compile on Linux from Source Code
Compile on MacOS from Source Code
Compile on Windows from Source Code
Paddle installation for machines with Kunlun XPU card
Appendix
Guides
Paddle 2 Introduction
Basic Concept
Introduction to Tensor
Broadcasting
VisualDL Tools
Introduction to VisualDL Toolset
VisualDL user guide
Dygraph to Static Graph
Basic Usage
Architecture
Supported Grammars
Introduction of InputSpec
Error Handling
Debugging Methods
Deploy Inference Model
Server-side Deployment
Install and Compile C++ Inference Library on Linux
Install and Compile C++ Inference Library on Windows
Introduction to C++ Inference API
Performance Profiling for TensorRT Library
Model Compression
Distributed Training
Quick start for distributed training
Write New Operators
How to write a new operator
Notes on operator development
How to contribute codes to Paddle
Guide of local development
Guide of submitting PR to Github
API Reference
Release Note
Server-side Deployment
»
Guides
»
Deploy Inference Model
»
Server-side Deployment
View page source
Server-side Deployment
¶
PaddlePaddle provides various methods to support deployment and release of trained models.
Install and Compile C++ Inference Library on Linux
Install and Compile C++ Inference Library on Windows
Introduction to C++ Inference API
Performance Profiling for TensorRT Library