LinearLrWarmup

class paddle.optimizer.lr_scheduler. LinearLrWarmup ( learing_rate, warmup_steps, start_lr, end_lr, last_epoch=- 1, verbose=False )

该接口提供一种学习率优化策略-线性学习率热身(warm up)对学习率进行初步调整。在正常调整学习率之前,先逐步增大学习率。

当训练步数小于热身步数(warmup_steps)时,学习率lr按如下方式更新:

linear_step = end_lr - start_lr
lr = start_lr + linear_step * (epoch / warmup_steps)

当训练步数大于等于热身步数(warmup_steps)时,学习率lr为:

lr = learning_rate

其中learning_rate为热身之后的学习率。

参数

  • learning rate (float|_LRScheduler):热启训练之后的学习率,可以是Python的float或_LRScheduler子类。

  • warmup_steps (int):进行warm up过程的步数。

  • start_lr (float):warm up的起始学习率。

  • end_lr (float):warm up的最终学习率。

  • last_epoch (int,可选): 上一轮的轮数,重启训练时设置为上一轮的epoch数。默认值为 -1,则为初始学习率 。

  • verbose (bool,可选):如果是 True ,则在每一轮更新时在标准输出 stdout 输出一条信息。默认值为 False

返回

返回计算LinearLrWarmup的可调用对象。

代码示例

import paddle
import numpy as np

# train on default dygraph mode
paddle.disable_static()
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = paddle.nn.Linear(10, 10)
scheduler = paddle.optimizer.LinearLrWarmup(
        learning_rate=0.5, warmup_steps=20, start_lr=0, end_lr=0.5, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameter_list=linear.parameters())
for epoch in range(20):
    for batch_id in range(2):
        x = paddle.to_tensor(x)
        out = linear(x)
        loss = paddle.reduce_mean(out)
        loss.backward()
        sgd.minimize(loss)
        linear.clear_gradients()
    scheduler.step()

# train on static mode
paddle.enable_static()
main_prog = paddle.static.Program()
start_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, start_prog):
    x = paddle.static.data(name='x', shape=[None, 4, 5])
    y = paddle.static.data(name='y', shape=[None, 4, 5])
    z = paddle.static.nn.fc(x, 100)
    loss = paddle.mean(z)
    scheduler = paddle.optimizer.lr_scheduler.LinearLrWarmup(
        learning_rate=0.5, warmup_steps=20, start_lr=0, end_lr=0.5, verbose=True)
    sgd = paddle.optimizer.SGD(learning_rate=scheduler)
    sgd.minimize(loss)

exe = paddle.static.Executor()
exe.run(start_prog)
for epoch in range(20):
    for batch_id in range(2):
        out = exe.run(
            main_prog,
            feed={
                'x': np.random.randn(3, 4, 5).astype('float32'),
                'y': np.random.randn(3, 4, 5).astype('float32')
            },
            fetch_list=loss.name)
    scheduler.step()
step ( epoch=None )

step函数需要在优化器的 step() 函数之后调用,调用之后将会根据epoch数来更新学习率,更新之后的学习率将会在优化器下一轮更新参数时使用。

参数:
  • epoch (int,可选)- 指定具体的epoch数。默认值None,此时将会从-1自动累加 epoch 数。

返回:

无。

代码示例

参照上述示例代码。