AdaptiveMaxPool1D

paddle.nn. AdaptiveMaxPool1D ( output_size, return_mask=False, name=None ) [源代码]

该算子根据输入 x , output_size 等参数对一个输入Tensor计算1D的自适应最大池化。输入和输出都是3-D Tensor, 默认是以 NCL 格式表示的,其中 N 是 batch size, C 是通道数, L 是输入特征的长度.

计算公式如下:

\[ \begin{align}\begin{aligned}lstart &= floor(i * L_{in} / L_{out})\\lend &= ceil((i + 1) * L_{in} / L_{out})\\Output(i) &= max(Input[lstart:lend])\end{aligned}\end{align} \]

参数

  • output_size (int|list|tuple): 算子输出特征图的长度,其数据类型为int,list或tuple。

  • return_mask (bool): 如果设置为True,则会与输出一起返回最大值的索引,默认为False。

  • name (str,可选): 操作的名称(可选,默认值为None)。更多信息请参见 Name

形状

  • x (Tensor): 默认形状为(批大小,通道数,输出特征长度),即NCL格式的3-D Tensor。 其数据类型为float32或者float64。

  • output (Tensor): 默认形状为(批大小,通道数,输出特征长度),即NCL格式的3-D Tensor。 其数据类型与输入x相同。

返回

计算AdaptiveMaxPool1D的可调用对象

抛出异常

  • ValueError - output_size 应是一个整数或长度为1的list,tuple

代码示例

# max adaptive pool1d
# suppose input data in shape of [N, C, L], `output_size` is m or [m],
# output shape is [N, C, m], adaptive pool divide L dimension
# of input data into m grids averagely and performs poolings in each
# grid to get output.
# adaptive max pool performs calculations as follow:
#
#     for i in range(m):
#         lstart = floor(i * L / m)
#         lend = ceil((i + 1) * L / m)
#         output[:, :, i] = max(input[:, :, lstart: lend])
#
import paddle
import paddle.nn as nn
import numpy as np

data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
AdaptiveMaxPool1D = nn.layer.AdaptiveMaxPool1D(output_size=16)
pool_out = AdaptiveMaxPool1D(data)
# pool_out shape: [1, 3, 16]

# for return_mask = true
AdaptiveMaxPool1D = nn.layer.AdaptiveMaxPool1D(output_size=16, return_mask=True)
pool_out, indices = AdaptiveMaxPool1D(data)
# pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]