instance_norm

paddle.fluid.layers.instance_norm(input, epsilon=1e-05, param_attr=None, bias_attr=None, name=None)[源代码]

可用作卷积和全连接操作的实例正则化函数,根据每个样本的每个通道的均值和方差信息进行正则化。该层需要的数据格式如下:

NCHW[batch,in_channels,in_height,in_width]

更多详情请参考 : Instance Normalization: The Missing Ingredient for Fast Stylization

input 是mini-batch的输入。

\[\begin{split}\mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \quad &// mean of each channel in each sample in a batch \\ \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \mu_{\beta})^2 \quad &// variance of each channel in each sample a batch \\ \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \quad &// normalize \\ y_i &\gets \gamma \hat{x_i} + \beta \quad &// scale-and-shift\end{split}\]
参数:
  • input (Variable) - instance_norm算子的输入特征,是一个Variable类型,输入的维度可以为 2, 3, 4, 5。数据类型:float32和float64。
  • epsilon (float,默认1e-05)-为了当前输入做标准化时得到稳定的结果而加在的分母上的扰动值。默认值为1e-5。
  • param_attr (ParamAttr|None) - instance_norm 权重参数的属性,可以设置为None或者一个ParamAttr的类(ParamAttr中可以指定参数的各种属性)。 如果设为None,则默认的参数初始化为1.0。如果在ParamAttr指定了属性时, instance_norm创建相应属性的param_attr(权重)参数。默认:None。
  • bias_attr (ParamAttr|None) - instance_norm 偏置参数的属性,可以设置为None或者一个ParamAttr的类(ParamAttr中可以指定参数的各种属性)。如果设为None,默认的参数初始化为0.0。如果在ParamAttr指定了参数的属性时, instance_norm创建相应属性的bias_attr(偏置)参数。默认:None。
  • name (string,默认None)- 该层名称(可选)。若设为None,则自动为该层命名。

返回: 张量,在输入中运用instance normalization后的结果

返回类型:变量(Variable)

代码示例

import paddle.fluid as fluid
import numpy as np
x = fluid.layers.data(name='x', shape=[3, 7, 3, 7], dtype='float32', append_batch_size=False)
hidden1 = fluid.layers.fc(input=x, size=200)
param_attr = fluid.ParamAttr(name='instance_norm_w', initializer=fluid.initializer.Constant(value=1.0))
bias_attr = fluid.ParamAttr(name='instance_norm_b', initializer=fluid.initializer.Constant(value=0.0))
hidden2 = fluid.layers.instance_norm(input=hidden1, param_attr = param_attr, bias_attr = bias_attr)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
np_x = np.random.random(size=(3, 7, 3, 7)).astype('float32')
output = exe.run(feed={"x": np_x}, fetch_list = [hidden2])
print(output)