ReduceOnPlateau¶
- class paddle.optimizer.lr. ReduceOnPlateau ( learning_rate, mode='min', factor=0.1, patience=10, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, epsilon=1e-08, verbose=False ) [source]
-
Reduce learning rate when
metricshas stopped descending. Models often benefit from reducing the learning rate by 2 to 10 times once model performance has no longer improvement.The
metricsis the one which has been pass intostep, it’s shape must [] or [1]. Whenmetricsstop descending for apatiencenumber of epochs, the learning rate will be reduced tolearning_rate * factor. (Specially,modecan also be set to'max, in this case, whenmetricsstop ascending for apatiencenumber of epochs, the learning rate will be reduced.)In addition, After each reduction, it will wait a
cooldownnumber of epochs before resuming above operation.- Parameters
-
learning_rate (float) – The initial learning rate. It is a python float number.
mode (str, optional) –
'min'or'max'can be selected. Normally, it is'min', which means that the learning rate will reduce whenlossstops descending. Specially, if it’s set to'max', the learning rate will reduce whenlossstops ascending. Default:'min'.factor (float, optional) – The Ratio that the learning rate will be reduced.
new_lr = origin_lr * factor. It should be less than 1.0. Default: 0.1.patience (int, optional) – When
lossdoesn’t improve for this number of epochs, learing rate will be reduced. Default: 10.threshold (float, optional) –
thresholdandthreshold_modewill determine the minimum change ofloss. This make tiny changes oflosswill be ignored. Default: 1e-4.threshold_mode (str, optional) –
'rel'or'abs'can be selected. In'rel'mode, the minimum change oflossislast_loss * threshold, wherelast_lossislossin last epoch. In'abs'mode, the minimum change oflossisthreshold. Default:'rel'.cooldown (int, optional) – The number of epochs to wait before resuming normal operation. Default: 0.
min_lr (float, optional) – The lower bound of the learning rate after reduction. Default: 0.
epsilon (float, optional) – Minimal decay applied to lr. If the difference between new and old lr is smaller than epsilon, the update is ignored. Default: 1e-8.
verbose (bool, optional) – If
True, prints a message to stdout for each update. Default:False.
- Returns
-
ReduceOnPlateauinstance to schedule learning rate.
Examples
import paddle import numpy as np # train on default dynamic graph mode linear = paddle.nn.Linear(10, 10) scheduler = paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0, factor=0.5, patience=5, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters()) for epoch in range(20): for batch_id in range(5): x = paddle.uniform([10, 10]) out = linear(x) loss = paddle.mean(out) loss.backward() sgd.step() sgd.clear_gradients() scheduler.step(loss) # If you update learning rate each step # scheduler.step(loss) # If you update learning rate each epoch # train on static graph mode paddle.enable_static() main_prog = paddle.static.Program() start_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, start_prog): x = paddle.static.data(name='x', shape=[None, 4, 5]) y = paddle.static.data(name='y', shape=[None, 4, 5]) z = paddle.static.nn.fc(x, 100) loss = paddle.mean(z) scheduler = paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0, factor=0.5, patience=5, verbose=True) sgd = paddle.optimizer.SGD(learning_rate=scheduler) sgd.minimize(loss) exe = paddle.static.Executor() exe.run(start_prog) for epoch in range(20): for batch_id in range(5): out = exe.run( main_prog, feed={ 'x': np.random.randn(3, 4, 5).astype('float32'), 'y': np.random.randn(3, 4, 5).astype('float32') }, fetch_list=loss.name) scheduler.step(out[0]) # If you update learning rate each step # scheduler.step(out[0]) # If you update learning rate each epoch
-
state_keys
(
)
state_keys¶
-
For those subclass who overload
LRScheduler(Base Class). Acquiescently, “last_epoch, last_lr” will be saved byself.keys = ['last_epoch', 'last_lr'].last_epochis the current epoch num, andlast_lris the current learning rate.If you want to change the default behavior, you should have a custom implementation of
_state_keys()to redefineself.keys.
-
step
(
metrics,
epoch=None
)
step¶
-
step should be called after optimizer.step() . It will update the learning rate in optimizer according to
metrics. The new learning rate will take effect on next epoch.- Parameters
-
metrics (Tensor|numpy.ndarray|float) – Which will be monitored to determine whether the learning rate will reduce. If it stop descending for a
patiencenumber of epochs, the learning rate will reduce. If it’s ‘Tensor’ or ‘numpy.ndarray’, its numel must be 1.epoch (int, None) – specify current epoch. Default: None. Auto-increment from last_epoch=-1.
- Returns
-
None
Examples
Please refer to the example of current LRScheduler.
-
get_lr
(
)
get_lr¶
-
For those subclass who overload
LRScheduler(Base Class), User should have a custom implementation ofget_lr().Otherwise, an
NotImplementedErrorexception will be thrown.
-
set_dict
(
state_dict
)
set_dict¶
-
Loads the schedulers state.
-
set_state_dict
(
state_dict
)
set_state_dict¶
-
Loads the schedulers state.
-
state_dict
(
)
state_dict¶
-
Returns the state of the scheduler as a
dict.It is a subset of
self.__dict__.
