CosineAnnealingWarmRestarts

class paddle.optimizer.lr. CosineAnnealingWarmRestarts ( learning_rate, T_0, T_mult=1, eta_min=0, last_epoch=- 1, verbose=False ) [source]

Set the learning rate of each parameter group using a cosine annealing schedule, where ηmax is set to the initial lr, Tcur is the number of epochs since the last restart and Ti is the number of epochs between two warm restarts in SGDR:

ηt=ηmin+12(ηmaxηmin)(1+cos(TcurTiπ))

When Tcur=Ti, set ηt=ηmin. When Tcur=0 after restart, set ηt=ηmax.

It has been proposed in SGDR: Stochastic Gradient Descent with Warm Restarts.

Parameters
  • learning_rate (float) – Initial learning rate.

  • T_0 (int) – Number of iterations for the first restart.

  • T_mult (int, optional) – A factor increases Ti after a restart. Default: 1.

  • eta_min (float, optional) – Minimum learning rate. Default: 0.

  • last_epoch (int, optional) – The index of last epoch. Default: -1, means initial learning rate.

  • verbose (bool, optional) – If True, prints a message to stdout for each update. Default: False.

Returns

CosineAnnealingWarmRestarts instance to schedule learning rate.

Examples

>>> import paddle
>>> import numpy as np
>>> # train on default dynamic graph mode
>>> linear = paddle.nn.Linear(10, 10)
>>> scheduler = paddle.optimizer.lr.CosineAnnealingWarmRestarts(learning_rate=0.5, T_0=1, T_mult=2, verbose=True)
>>> adam = paddle.optimizer.Adam(learning_rate=scheduler, parameters=linear.parameters())
>>> for epoch in range(10):
...    for batch_id in range(10):
...        x = paddle.uniform([10, 10])
...        out = linear(x)
...        loss = paddle.mean(out)
...        loss.backward()
...        adam.step()
...        adam.clear_grad()
...    scheduler.step(epoch)        # You should update learning rate each step
>>> import paddle
>>> import numpy as np
>>> paddle.enable_static()
>>> main_prog = paddle.static.Program()
>>> start_prog = paddle.static.Program()
>>> with paddle.static.program_guard(main_prog, start_prog):
...    x = paddle.static.data(name='x', shape=[None, 4, 5])
...    y = paddle.static.data(name='y', shape=[None, 4, 5])
...    z = paddle.static.nn.fc(x, 100)
...    loss = paddle.mean(z)
...    scheduler = paddle.optimizer.lr.CosineAnnealingWarmRestarts(learning_rate=0.5, T_0=1, T_mult=2,verbose=True)
...    sgd = paddle.optimizer.SGD(learning_rate=scheduler)
...    sgd.minimize(loss)
>>> exe = paddle.static.Executor()
>>> exe.run(start_prog)
>>> for epoch in range(10):
...    for batch_id in range(10):
...        out = exe.run(
...            main_prog,
...            feed={
...                'x': np.random.randn(3, 4, 5).astype('float32'),
...                'y': np.random.randn(3, 4, 5).astype('float32')
...            },
...            fetch_list=loss.name)
...    scheduler.step(epoch)    # You should update learning rate each step
get_lr ( )

get_lr

For those subclass who overload LRScheduler (Base Class), User should have a custom implementation of get_lr() .

Otherwise, an NotImplementedError exception will be thrown.

set_dict ( state_dict )

set_dict

Loads the schedulers state.

set_state_dict ( state_dict )

set_state_dict

Loads the schedulers state.

state_dict ( )

state_dict

Returns the state of the scheduler as a dict.

It is a subset of self.__dict__ .

state_keys ( )

state_keys

For those subclass who overload LRScheduler (Base Class). Acquiescently, “last_epoch, last_lr” will be saved by self.keys = ['last_epoch', 'last_lr'] .

last_epoch is the current epoch num, and last_lr is the current learning rate.

If you want to change the default behavior, you should have a custom implementation of _state_keys() to redefine self.keys .

step ( epoch=None )

step

step should be called after optimizer.step() . It will update the learning rate in optimizer. The new learning rate will take effect on next epoch.

Parameters

epoch (int, None) – specify current epoch. Default: None. Auto-increment from last_epoch=-1.

Returns

None

Examples

Please refer to the example of current LRScheduler.