$ hub install japan_ocr_db_crnn_mobile==1.1.0
paddlepaddle >= 2.0.2
paddlehub >= 2.0.0 | 如何安装paddlehub
$ hub install japan_ocr_db_crnn_mobile
$ hub run japan_ocr_db_crnn_mobile --input_path "/PATH/TO/IMAGE"
import paddlehub as hub
import cv2
ocr = hub.Module(name="japan_ocr_db_crnn_mobile", enable_mkldnn=True) # mkldnn加速仅在CPU下有效
result = ocr.recognize_text(images=[cv2.imread('/PATH/TO/IMAGE')])
# or
# result = ocr.recognize_text(paths=['/PATH/TO/IMAGE'])
def __init__(text_detector_module=None, enable_mkldnn=False)
构造JapanOCRDBCRNNMobile对象
参数
def recognize_text(images=[],
paths=[],
use_gpu=False,
output_dir='ocr_result',
visualization=False,
box_thresh=0.5,
text_thresh=0.5,
angle_classification_thresh=0.9)
预测API,检测输入图片中的所有日文文本的位置。
参数
- **返回**
- res (list\[dict\]): 识别结果的列表,列表中每一个元素为 dict,各字段为:
- data (list\[dict\]): 识别文本结果,列表中每一个元素为 dict,各字段为:
- text(str): 识别得到的文本
- confidence(float): 识别文本结果置信度
- text_box_position(list): 文本框在原图中的像素坐标,4*2的矩阵,依次表示文本框左下、右下、右上、左上顶点的坐标
如果无识别结果则data为\[\]
- save_path (str, optional): 识别结果的保存路径,如不保存图片则save_path为''
PaddleHub Serving 可以部署一个目标检测的在线服务。
$ hub serving start -m japan_ocr_db_crnn_mobile
这样就完成了一个目标检测的服务化API的部署,默认端口号为8866。
NOTE: 如使用GPU预测,则需要在启动服务之前,请设置CUDA_VISIBLE_DEVICES环境变量,否则不用设置。
配置好服务端,以下数行代码即可实现发送预测请求,获取预测结果
import requests
import json
import cv2
import base64
def cv2_to_base64(image):
data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(data.tostring()).decode('utf8')
# 发送HTTP请求
data = {'images':[cv2_to_base64(cv2.imread("/PATH/TO/IMAGE"))]}
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:8866/predict/japan_ocr_db_crnn_mobile"
r = requests.post(url=url, headers=headers, data=json.dumps(data))
# 打印预测结果
print(r.json()["results"])
1.0.0
初始发布
1.1.0
优化模型
$ hub install japan_ocr_db_crnn_mobile==1.1.0