\u200E
图像分类-AlexNet
类别 计算机视觉(PaddleCV)
应用 人脸安防 交通场景识别 图像内容检索 相册归类 医学影像识别
模型概述
AlexNet首次在CNN中成功的应用了ReLU、Dropout和LRN,并使用GPU进行运算加速。
模型说明
# 图像分类以及模型库 ## 简介 图像分类是计算机视觉的重要领域,它的目标是将图像分类到预定义的标签。近期,许多研究者提出很多不同种类的神经网络,并且极大的提升了分类算法的性能。本页将介绍如何使用PaddlePaddle进行图像分类。 ## 快速开始 ### 安装说明 在当前目录下运行样例代码需要python 2.7及以上版本,PadddlePaddle Fluid v1.5或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据 [installation document](http://paddlepaddle.org/documentation/docs/zh/1.4/beginners_guide/install/index_cn.html) 中的说明来更新PaddlePaddle。 ### 数据准备 下面给出了ImageNet分类任务的样例,首先,通过如下的方式进行数据的准备: ``` cd data/ILSVRC2012/ sh download_imagenet2012.sh ``` 在```download_imagenet2012.sh```脚本中,通过下面三步来准备数据: **步骤一:** 首先在```image-net.org```网站上完成注册,用于获得一对```Username```和```AccessKey```。 **步骤二:** 从ImageNet官网下载ImageNet-2012的图像数据。训练以及验证数据集会分别被下载到"train" 和 "val" 目录中。请注意,ImaegNet数据的大小超过40GB,下载非常耗时;已经自行下载ImageNet的用户可以直接将数据组织放置到```data/ILSVRC2012```。 **步骤三:** 下载训练与验证集合对应的标签文件。下面两个文件分别包含了训练集合与验证集合中图像的标签: * train_list.txt: ImageNet-2012训练集合的标签文件,每一行采用"空格"分隔图像路径与标注,例如: ``` train/n02483708/n02483708_2436.jpeg 369 ``` * val_list.txt: ImageNet-2012验证集合的标签文件,每一行采用"空格"分隔图像路径与标注,例如: ``` val/ILSVRC2012_val_00000001.jpeg 65 ``` 注意:可能需要根据本地环境调整reader.py相关路径来正确读取数据。 ### 模型训练 数据准备完毕后,可以通过如下的方式启动训练: ``` python train.py \ --model=SE_ResNeXt50_32x4d \ --batch_size=32 \ --total_images=1281167 \ --class_dim=1000 \ --image_shape=3,224,224 \ --model_save_dir=output/ \ --with_mem_opt=False \ --with_inplace=True \ --lr_strategy=piecewise_decay \ --lr=0.1 ``` **参数说明:** * **model**: 模型名称, 默认值: "SE_ResNeXt50_32x4d" * **num_epochs**: 训练回合数,默认值: 120 * **batch_size**: 批大小,默认值: 256 * **use_gpu**: 是否在GPU上运行,默认值: True * **total_images**: 图片数,ImageNet2012默认值: 1281167. * **class_dim**: 类别数,默认值: 1000 * **image_shape**: 图片大小,默认值: "3,224,224" * **model_save_dir**: 模型存储路径,默认值: "output/" * **with_mem_opt**: 是否开启显存优化,默认值: False * **with_inplace**: 是否开启inplace显存优化,默认值: True * **lr_strategy**: 学习率变化策略,默认值: "piecewise_decay" * **lr**: 初始学习率,默认值: 0.1 * **pretrained_model**: 预训练模型路径,默认值: None * **checkpoint**: 用于继续训练的检查点(指定具体模型存储路径,如"output/SE_ResNeXt50_32x4d/100/"),默认值: None * **fp16**: 是否开启混合精度训练,默认值: False * **scale_loss**: 调整混合训练的loss scale值,默认值: 1.0 * **l2_decay**: l2_decay值,默认值: 1e-4 * **momentum_rate**: momentum_rate值,默认值: 0.9 * **use_label_smoothing**: 是否对数据进行label smoothing处理,默认值:False * **label_smoothing_epsilon**: label_smoothing的epsilon值,默认值:0.2 * **lower_scale**: 数据随机裁剪处理时的lower scale值, upper scale值固定为1.0,默认值:0.08 * **lower_ratio**: 数据随机裁剪处理时的lower ratio值,默认值:3./4. * **upper_ration**: 数据随机裁剪处理时的upper ratio值,默认值:4./3. * **resize_short_size**: 指定数据处理时改变图像大小的短边值,默认值: 256 * **use_mixup**: 是否对数据进行mixup处理,默认值:False * **mixup_alpha**: 指定mixup处理时的alpha值,默认值: 0.2 * **is_distill**: 是否进行蒸馏训练,默认值: False **在```run.sh```中有用于训练的脚本.** **数据读取器说明:** 数据读取器定义在PIL:```reader.py```和CV2:```reader_cv2.py```文件中,现在默认基于cv2的数据读取器, 在[训练阶段](#模型训练), 默认采用的增广方式是随机裁剪与水平翻转, 而在[模型评估](#模型评估)与[模型预测](#模型预测)阶段用的默认方式是中心裁剪。当前支持的数据增广方式有: * 旋转 * 颜色抖动(cv2暂未实现) * 随机裁剪 * 中心裁剪 * 长宽调整 * 水平翻转 ### 参数微调 参数微调是指在特定任务上微调已训练模型的参数。可以下载[已有模型及其性能](#已有模型及其性能)并且设置```path_to_pretrain_model```为模型所在路径,微调一个模型可以采用如下的命令: ``` python train.py \ --pretrained_model=${path_to_pretrain_model} ``` 注意:根据具体模型和任务添加并调整其他参数 ### 模型评估 模型评估是指对训练完毕的模型评估各类性能指标。可以下载[已有模型及其性能](#已有模型及其性能)并且设置```path_to_pretrain_model```为模型所在路径。运行如下的命令,可以获得模型top-1/top-5精度: ``` python eval.py \ --pretrained_model=${path_to_pretrain_model} ``` 注意:根据具体模型和任务添加并调整其他参数 ### 模型预测 模型预测可以获取一个模型的预测分数或者图像的特征,可以下载[已有模型及其性能](#已有模型及其性能)并且设置```path_to_pretrain_model```为模型所在路径。运行如下的命令获得预测分数,: ``` python infer.py \ --pretrained_model=${path_to_pretrain_model} ``` 注意:根据具体模型和任务添加并调整其他参数 ## 进阶使用 ### 混合精度训练 可以通过开启`--fp16=True`启动混合精度训练,这样训练过程会使用float16数据,并输出float32的模型参数("master"参数)。您可能需要同时传入`--scale_loss`来解决fp16训练的精度问题,通常传入`--scale_loss=8.0`即可。 注意,目前混合精度训练不能和内存优化功能同时使用,所以需要传`--with_mem_opt=False`这个参数来禁用内存优化功能。 ### CE测试 注意:CE相关代码仅用于内部测试,enable_ce默认设置False。 ## 已发布模型及其性能 表格中列出了在models目录下目前支持的图像分类模型,并且给出了已完成训练的模型在ImageNet-2012验证集合上的top-1/top-5精度,以及Paddle Fluid和Paddle TensorRT基于动态链接库的预测时间(测 试GPU型号为Tesla P4)。由于Paddle TensorRT对ShuffleNetV2_swish使用的激活函数swish,MobileNetV2使用的激活函数relu6不支持,因此预测加速不明显。可以通过点击相应模型的名称下载对应的预训练模型。 - 注意 - 1:ResNet50_vd_v2是ResNet50_vd蒸馏版本。 - 2:InceptionV4和Xception采用的输入图像的分辨率为299x299,DarkNet53为256x256,Fix_ResNeXt101_32x48d_wsl为320x320,其余模型使用的分辨率均为224x224。在预测时,DarkNet53与Fix_ResNeXt101_32x48d_wsl系列网络resize_short_size与输入的图像分辨率的宽或高相同,InceptionV4和Xception网络resize_short_size为320,其余网络resize_short_size均为256。 - 3:调用动态链接库预测时需要将训练模型转换为二进制模型 ```python infer.py --save_inference=True``` - 4: ResNeXt101_wsl系列的预训练模型转自pytorch模型,详情请移步[RESNEXT WSL](https://pytorch.org/hub/facebookresearch_WSL-Images_resnext/)。 ### AlexNet |model | top-1/top-5 accuracy(CV2) | Paddle Fluid inference time(ms) | Paddle TensorRT inference time(ms) | |- |:-: |:-: |:-: | |[AlexNet](http://paddle-imagenet-models-name.bj.bcebos.com/AlexNet_pretrained.tar) | 56.72%/79.17% | 3.083 | 2.728 | ## FAQ **Q:** 加载预训练模型报错,Enforce failed. Expected x_dims[1] == labels_dims[1], but received x_dims[1]:1000 != labels_dims[1]:6. **A:** 维度对不上,删掉预训练参数中的FC ## 参考文献 - AlexNet: [imagenet-classification-with-deep-convolutional-neural-networks](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf), Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton ## 版本更新 - 2018/12/03 **Stage1**: 更新AlexNet,ResNet50,ResNet101,MobileNetV1 - 2018/12/23 **Stage2**: 更新VGG系列 SeResNeXt50_32x4d,SeResNeXt101_32x4d,ResNet152 - 2019/01/31 更新MobileNetV2_x1_0 - 2019/04/01 **Stage3**: 更新ResNet18,ResNet34,GoogLeNet,ShuffleNetV2 - 2019/06/12 **Stage4**: 更新ResNet50_vc,ResNet50_vd,ResNet101_vd,ResNet152_vd,ResNet200_vd,SE154_vd InceptionV4,ResNeXt101_64x4d,ResNeXt101_vd_64x4d - 2019/06/22 更新ResNet50_vd_v2 - 2019/07/02 **Stage5**: 更新MobileNetV2_x0_5, ResNeXt50_32x4d, ResNeXt50_64x4d, Xception_41, ResNet101_vd - 2019/07/19 **Stage6**: 更新ShuffleNetV2_x0_25, ShuffleNetV2_x0_33, ShuffleNetV2_x0_5, ShuffleNetV2_x1_0, ShuffleNetV2_x1_5, ShuffleNetV2_x2_0, MobileNetV2_x0_25, MobileNetV2_x1_5, MobileNetV2_x2_0, ResNeXt50_vd_64x4d, ResNeXt101_32x4d, ResNeXt152_32x4d - 2019/08/01 **Stage7**: 更新DarkNet53, DenseNet121. Densenet161, DenseNet169, DenseNet201, DenseNet264, SqueezeNet1_0, SqueezeNet1_1, ResNeXt50_vd_32x4d, ResNeXt152_64x4d, ResNeXt101_32x8d_wsl, ResNeXt101_32x16d_wsl, ResNeXt101_32x32d_wsl, ResNeXt101_32x48d_wsl, Fix_ResNeXt101_32x48d_wsl ## 如何贡献代码 如果你可以修复某个issue或者增加一个新功能,欢迎给我们提交PR。如果对应的PR被接受了,我们将根据贡献的质量和难度进行打分(0-5分,越高越好)。如果你累计获得了10分,可以联系我们获得面试机会或者为你写推荐信。