\u200E
PP-LiteSeg重磅开源!高精度轻量级图像分割SOTA模型
发布日期:2022-04-29T03:17:17.000+0000 浏览量:165次


图像分割技术在医疗病灶分析、自动驾驶车道线分割、绿幕人像抠图等领域发挥着举足轻重的作用。相比目标检测、图像分类等技术,图像分割需要将每个像素点进行分类,在精细的图像识别任务中不可替代。

图1 图像分割应用


然而在实际产业落地过程中对算法的要求是苛刻的。在保障高识别精度的情况下,往往会牺牲算法运行速度;反之追求速度,则会带来精度的大幅度损失。

图2 各算法速度与精度平衡情况示意

因此,产业及学术界翘楚都竭力探索 能同时实现速度和精度平衡 、在当前云、边、端多场景实现高效协同的优秀算法。而 PP-LiteSeg 凭着 mIoU 72.0、273.6 FPS (Cityscapes数据集,1080ti) 的超优秀性能 ,超越当前CVPR SOTA模型STDC,在众多优秀算法中脱颖而出,真正实现了精度和速度的最佳均衡。

图3 PP-LiteSeg精度/速度说明

行动力超强的小伙伴一定早已迫不及待了吧
识趣的小编赶紧送上传送门:
https://github.com/PaddlePaddle/PaddleSeg
记得Star收藏支持!


更值得令人惊喜的是,PP-LiteSeg不仅在开源数据集评测效果优秀,在产业数据集也表现出了惊人的实力!例如在质检、遥感场景,PP-LiteSeg的精度与高精度、大体积的OCRNet持平,而速度却快了近7倍!

图4 PP-LiteSeg和OCRNet在某工业质检数据集识别情况对比
 

图5 PP-LiteSeg和OCRNet在deepglobe数据集识别情况对比

那PP-LiteSeg为何可以拥有这么优秀的效果呢?

PP-LiteSeg提出三个创新模块 灵活的解码模块(FLD)、注意力融合模块(UAFM)、简易金字塔池化模块(SPPM) 。FLD灵活调整解码模块中通道数,平衡编码模块和解码模块的计算量,使得整个模型更加高效;UAFM模块效地加强特征表示,更好地提升了模型的精度;SPPM模块减小了中间特征图的通道数、移除了跳跃连接,使得模型性能进一步提升。

图6 PP-LiteSeg 模型结构和优化点

正是基于这些模块的设计与改进,最终PP-LiteSeg超越其他方法,在1080ti上精度为mIoU 72.0时,速度高达273.6 FPS , (mIoU 77.5 时,FPS为102.6),实现了精度和速度的SOTA平衡。更多关于PP-LiteSeg的内容,请参考:

https://github.com/PaddlePaddle/PaddleSeg/tree/release/2.5/configs/pp_liteseg


为了让开发者们更深入地了解PP-LiteSeg这个SOTA模型,解决落地应用难点,掌握产业实践的核心能力,飞桨团队精心准备了精品直播课!

4月26日20:30 ,百度资深高工将为我们详细介绍 精度和速度的SOTA平衡的PP-LiteSeg ,对各类型SOTA模型的原理及使用方式进行拆解,之后两天还有分割拓展应用梳理及产业案例全流程实操,对各类痛难点解决方案进行手把手教学,加上直播现场互动答疑,还在等什么!抓紧扫码上车吧!
 


引用说明:
图1:
  • 辅助驾驶图片来源百度地图APP AR导航截图
  • 3D分割数据集来源于 MRISpineSeg  spine dataset
  • 人像抠图源于百度飞桨内部工作人员
  • 合作伙伴提供质检数据样例
  • 遥感图像源于deepglobe数据集
图4:
  • 合作伙伴提供质检数据样例
图5:
  • deepglobe数据集


关注【飞桨PaddlePaddle】公众号

获取更多技术内容~