gaussian_random_batch_size_like¶
- paddle.fluid.layers.nn. gaussian_random_batch_size_like ( input, shape, input_dim_idx=0, output_dim_idx=0, mean=0.0, std=1.0, seed=0, dtype='float32' ) [source]
-
Used to initialize tensors with gaussian random generator. The default mean of the distribution is 0, and default standard deviation (std) of the distribution is 1.0. Uers can set mean and std via input arguments.
- Parameters
-
input (Variable) – Tensor whose input_dim_idx’th dimension specifies the batch_size
shape (tuple|list) – The shape of the output
input_dim_idx (int) – default 0. The index of input’s batch size dimension
output_dim_idx (int) – default 0. The index of output’s batch size dimension
mean (float) – (float, default 0.0) The mean (or center) of the gaussian distribution
std (float) – (float, default 1.0) The standard deviation (std, or spread) of the gaussian distribution
seed (int) – (int, default 0) Random seed of generator.0 means don’t specify random seed.Note that if seed is not 0, this operator will always generate the same random numbers every time
dtype (np.dtype|core.VarDesc.VarType|str) – The type of output data, float32 or float_64.
- Returns
-
Tensor of specified shape will be filled with the specified value
- Return type
-
out (Variable)
Examples
import paddle import paddle.fluid as fluid paddle.enable_static() input = fluid.data(name="input", shape=[13, 11], dtype='float32') out = fluid.layers.gaussian_random_batch_size_like( input, shape=[-1, 11], mean=1.0, std=2.0)