lrn

paddle.fluid.layers.nn. lrn ( input, n=5, k=1.0, alpha=0.0001, beta=0.75, name=None, data_format='NCHW' ) [source]
Alias_main

paddle.nn.functional.lrn :alias: paddle.nn.functional.lrn,paddle.nn.functional.norm.lrn :old_api: paddle.fluid.layers.lrn

This operator implements the Local Response Normalization Layer. This layer performs a type of “lateral inhibition” by normalizing over local input regions. For more information, please refer to ImageNet Classification with Deep Convolutional Neural Networks

The formula is as follows:

Output(i,x,y)=Input(i,x,y)/left(k+alphasumlimitsmin(C1,i+n/2)j=max(0,in/2)(Input(j,x,y))2right)beta

In the above equation:

  • n : The number of channels to sum over.

  • k : The offset (avoid being divided by 0).

  • alpha : The scaling parameter.

  • beta : The exponent parameter.

Parameters
  • input (Variable) – Input feature, 4D-Tensor with the shape of [N,C,H,W] or [N, H, W, C], where N is the batch size, C is the input channel, H is Height, W is weight. The data type is float32. The rank of this tensor must be 4, otherwise it will raise ValueError.

  • n (int, optional) – The number of channels to sum over. Default: 5

  • k (float, optional) – An offset, positive. Default: 1.0

  • alpha (float, optional) – The scaling parameter, positive. Default:1e-4

  • beta (float, optional) – The exponent, positive. Default:0.75

  • name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name

  • data_format (str, optional) – Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from: “NCHW”, “NHWC”. The default is “NCHW”. When it is “NCHW”, the data is stored in the order of: [batch_size, input_channels, input_height, input_width].

Returns

A tensor variable storing the transformation result with the same shape and data type as input.

Return type

Variable

Examples:

import paddle.fluid as fluid
data = fluid.data(
    name="data", shape=[None, 3, 112, 112], dtype="float32")
lrn = fluid.layers.lrn(input=data)
print(lrn.shape)  # [-1, 3, 112, 112]
print(lrn.dtype)  # float32