DenseNet¶
- class paddle.vision.models. DenseNet ( layers=121, bn_size=4, dropout=0.0, num_classes=1000, with_pool=True ) [source]
-
DenseNet model from “Densely Connected Convolutional Networks”
- Parameters
-
layers (int) – layers of densenet. Default: 121.
bn_size (int) – expansion of growth rate in the middle layer. Default: 4.
dropout (float) – dropout rate. Default: 0..
num_classes (int) – output dim of last fc layer. Default: 1000.
with_pool (bool) – use pool before the last fc layer or not. Default: True.
Examples
import paddle from paddle.vision.models import DenseNet # build model densenet = DenseNet() x = paddle.rand([1, 3, 224, 224]) out = densenet(x) print(out.shape)
-
forward
(
input
)
forward¶
-
Defines the computation performed at every call. Should be overridden by all subclasses.
- Parameters
-
*inputs (tuple) – unpacked tuple arguments
**kwargs (dict) – unpacked dict arguments