all¶
- paddle. all ( x, axis=None, keepdim=False, name=None ) [source]
 - 
         
Computes the
logical andof tensor elements over the given dimension.- Parameters
 - 
           
x (Tensor) – An N-D Tensor, the input data type should be bool.
axis (int|list|tuple, optional) – The dimensions along which the
logical andis compute. IfNone, and all elements ofxand return a Tensor with a single element, otherwise must be in the range \([-rank(x), rank(x))\). If \(axis[i] < 0\), the dimension to reduce is \(rank + axis[i]\).keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result Tensor will have one fewer dimension than the
xunlesskeepdimis true, default value is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
 - Returns
 - 
           
Results the
logical andon the specified axis of input Tensor x, it’s data type is bool. - Return type
 - 
           
Tensor
 
Examples
>>> import paddle >>> # x is a bool Tensor with following elements: >>> # [[True, False] >>> # [True, True]] >>> x = paddle.to_tensor([[1, 0], [1, 1]], dtype='int32') >>> x Tensor(shape=[2, 2], dtype=int32, place=Place(cpu), stop_gradient=True, [[1, 0], [1, 1]]) >>> x = paddle.cast(x, 'bool') >>> # out1 should be False >>> out1 = paddle.all(x) >>> out1 Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True, False) >>> # out2 should be [True, False] >>> out2 = paddle.all(x, axis=0) >>> out2 Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True, [True , False]) >>> # keepdim=False, out3 should be [False, True], out.shape should be (2,) >>> out3 = paddle.all(x, axis=-1) >>> out3 Tensor(shape=[2], dtype=bool, place=Place(cpu), stop_gradient=True, [False, True ]) >>> # keepdim=True, out4 should be [[False], [True]], out.shape should be (2, 1) >>> out4 = paddle.all(x, axis=1, keepdim=True) >>> out4 Tensor(shape=[2, 1], dtype=bool, place=Place(cpu), stop_gradient=True, [[False], [True ]])
 
