nanquantile¶
- paddle. nanquantile ( x, q, axis=None, keepdim=False ) [source]
-
Compute the quantile of the input as if NaN values in input did not exist. If all values in a reduced row are NaN, then the quantiles for that reduction will be NaN.
- Parameters
-
x (Tensor) – The input Tensor, it’s data type can be float32, float64, int32, int64.
q (int|float|list) – The q for calculate quantile, which should be in range [0, 1]. If q is a list, each q will be calculated and the first dimension of output is same to the number of
q.axis (int|list, optional) – The axis along which to calculate quantile.
axisshould be int or list of int.axisshould be in range [-D, D), where D is the dimensions ofx. Ifaxisis less than 0, it works the same way as \(axis + D\). Ifaxisis a list, quantile is calculated over all elements of given axises. Ifaxisis None, quantile is calculated over all elements ofx. Default is None.keepdim (bool, optional) – Whether to reserve the reduced dimension(s) in the output Tensor. If
keepdimis True, the dimensions of the output Tensor is the same asxexcept in the reduced dimensions(it is of size 1 in this case). Otherwise, the shape of the output Tensor is squeezed inaxis. Default is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Tensor, results of quantile along
axisofx. In order to obtain higher precision, data type of results will be float64.
Examples
>>> import paddle >>> x = paddle.to_tensor( ... [[0, 1, 2, 3, 4], ... [5, 6, 7, 8, 9]], ... dtype="float32") >>> x[0,0] = float("nan") >>> y1 = paddle.nanquantile(x, q=0.5, axis=[0, 1]) >>> print(y1) Tensor(shape=[], dtype=float64, place=Place(cpu), stop_gradient=True, 5.) >>> y2 = paddle.nanquantile(x, q=0.5, axis=1) >>> print(y2) Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True, [2.50000000, 7. ]) >>> y3 = paddle.nanquantile(x, q=[0.3, 0.5], axis=0) >>> print(y3) Tensor(shape=[2, 5], dtype=float64, place=Place(cpu), stop_gradient=True, [[5. , 2.50000000, 3.50000000, 4.50000000, 5.50000000], [5. , 3.50000000, 4.50000000, 5.50000000, 6.50000000]]) >>> y4 = paddle.nanquantile(x, q=0.8, axis=1, keepdim=True) >>> print(y4) Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=True, [[3.40000000], [8.20000000]]) >>> nan = paddle.full(shape=[2, 3], fill_value=float("nan")) >>> y5 = paddle.nanquantile(nan, q=0.8, axis=1, keepdim=True) >>> print(y5) Tensor(shape=[2, 1], dtype=float64, place=Place(cpu), stop_gradient=True, [[nan], [nan]])
