ClipGradByNorm

class paddle.nn. ClipGradByNorm ( clip_norm ) [source]

Limit the l2 norm of multi-dimensional Tensor X to clip_norm .

  • If the l2 norm of X is greater than clip_norm , X will be compressed by a ratio.

  • If the l2 norm of X is less than or equal to clip_norm , nothing will be done.

The multidimensional Tensor X is not passed from this class, but the gradients of all parameters set in optimizer. If need_clip of specific param is False in its ParamAttr, then the gradients of this param will not be clipped.

Gradient clip will takes effect after being set in optimizer , see the document optimizer (for example: SGD).

The clipping formula is:

Out={Xif(norm(X)clip_norm)clip_normXnorm(X)if(norm(X)>clip_norm)

where norm(X) represents the L2 norm of X.

norm(X)=(ni=1|x_i|2)12

Note

need_clip of ClipGradByNorm HAS BEEN DEPRECATED since 2.0. Please use need_clip in ParamAttr to speficiy the clip scope.

Parameters

clip_norm (float) – The maximum norm value.

Examples

import paddle

x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
linear = paddle.nn.Linear(in_features=10, out_features=10,
                          weight_attr=paddle.ParamAttr(need_clip=True),
                          bias_attr=paddle.ParamAttr(need_clip=False))
out = linear(x)
loss = paddle.mean(out)
loss.backward()

clip = paddle.nn.ClipGradByNorm(clip_norm=1.0)
sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters(), grad_clip=clip)
sdg.step()

Used in the guide/tutorials