Geometric
- class paddle.distribution. Geometric ( probs: float | Tensor ) [source]
- 
         Geometric distribution parameterized by probs. In probability theory and statistics, the geometric distribution is one of discrete probability distributions, parameterized by one positive shape parameter, denoted by probs. In n Bernoulli trials, it takes k+1 trials to get the probability of success for the first time. In detail, it is: the probability that the first k times failed and the kth time succeeded. The geometric distribution is a special case of the Pascal distribution when r=1. The probability mass function (pmf) is \[Pr(Y=k)=(1-p)^kp\]where k is number of trials failed before seeing a success, and p is probability of success for each trial and k=0,1,2,3,4…, p belong to (0,1]. - Parameters
- 
           probs (Real|Tensor) – Probability parameter. The value of probs must be positive. When the parameter is a tensor, probs is probability of success for each trial. 
- Returns
- 
           Geometric distribution for instantiation of probs. 
 Examples >>> import paddle >>> from paddle.distribution import Geometric >>> geom = Geometric(0.5) >>> print(geom.mean) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 1.) >>> print(geom.variance) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 2.) >>> print(geom.stddev) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 1.41421354) - 
            
           probs
           (
           value: Tensor
           ) 
            Tensor
           probs¶
- 
           Probability density/mass function. Note This method will be deprecated in the future, please use prob instead. 
 - property mean : Tensor
- 
           Mean of geometric distribution. 
 - property variance : Tensor
- 
           Variance of geometric distribution. 
 - property stddev : Tensor
- 
           Standard deviation of Geometric distribution. 
 - 
            
           pmf
           (
           k: int | Tensor
           ) 
            Tensor
           pmf¶
- 
           Probability mass function evaluated at k. \[P(X=k) = (1-p)^{k} p, \quad k=0,1,2,3,\ldots\]- Parameters
- 
             k (int) – Value to be evaluated. 
- Returns
- 
             Probability. 
- Return type
- 
             Tensor 
 Examples >>> import paddle >>> from paddle.distribution import Geometric >>> geom = Geometric(0.5) >>> print(geom.pmf(2)) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.12500000) 
 - 
            
           log_pmf
           (
           k: int | Tensor
           ) 
            Tensor
           log_pmf¶
- 
           Log probability mass function evaluated at k. \[\log P(X = k) = \log(1-p)^k p\]- Parameters
- 
             k (int) – Value to be evaluated. 
- Returns
- 
             Log probability. 
- Return type
- 
             Tensor 
 Examples >>> import paddle >>> from paddle.distribution import Geometric >>> geom = Geometric(0.5) >>> print(geom.log_pmf(2)) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, -2.07944131) 
 - 
            
           sample
           (
           shape: Sequence[int] = []
           ) 
            Tensor
           sample¶
- 
           Sample from Geometric distribution with sample shape. - Parameters
- 
             shape (Sequence[int]) – Sample shape. 
- Returns
- 
             Sampled data with shape sample_shape + batch_shape + event_shape. 
 Examples >>> import paddle >>> from paddle.distribution import Geometric >>> paddle.seed(2023) >>> geom = Geometric(0.5) >>> print(geom.sample((2,2))) Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[0., 0.], [1., 0.]]) 
 - 
            
           rsample
           (
           shape: Sequence[int] = []
           ) 
            Tensor
           rsample¶
- 
           Generate samples of the specified shape. - Parameters
- 
             shape (Sequence[int]) – The shape of generated samples. 
- Returns
- 
             A sample tensor that fits the Geometric distribution. 
- Return type
- 
             Tensor 
 Examples >>> import paddle >>> from paddle.distribution import Geometric >>> paddle.seed(2023) >>> geom = Geometric(0.5) >>> print(geom.rsample((2,2))) Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[0., 0.], [1., 0.]]) 
 - 
            
           entropy
           (
           ) 
            Tensor
           entropy¶
- 
           Entropy of dirichlet distribution. \[H(X) = -\left[\frac{1}{p} \log p + \frac{1-p}{p^2} \log (1-p) \right]\]- Returns
- 
             Entropy. 
- Return type
- 
             Tensor 
 Examples >>> import paddle >>> from paddle.distribution import Geometric >>> geom = Geometric(0.5) >>> print(geom.entropy()) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 1.38629425) 
 - 
            
           cdf
           (
           k: int | Tensor
           ) 
            Tensor
           cdf¶
- 
           Cdf of geometric distribution. \[F(X \leq k) = 1 - (1-p)^(k+1), \quad k=0,1,2,\ldots\]- Parameters
- 
             k – The number of trials performed. 
- Returns
- 
             Entropy. 
- Return type
- 
             Tensor 
 Examples >>> import paddle >>> from paddle.distribution import Geometric >>> geom = Geometric(0.5) >>> print(geom.cdf(4)) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.96875000) 
 - property batch_shape : Sequence[int]
- 
           Returns batch shape of distribution - Returns
- 
             batch shape 
- Return type
- 
             Sequence[int] 
 
 - property event_shape : Sequence[int]
- 
           Returns event shape of distribution - Returns
- 
             event shape 
- Return type
- 
             Sequence[int] 
 
 - 
            
           kl_divergence
           (
           other: Geometric
           ) 
            Tensor
           [source]
           kl_divergence¶
- 
           Calculate the KL divergence KL(self || other) with two Geometric instances. \[KL(P \| Q) = \frac{p}{q} \log \frac{p}{q} + \log (1-p) - \log (1-q)\]- Parameters
- 
             other (Geometric) – An instance of Geometric. 
- Returns
- 
             The kl-divergence between two geometric distributions. 
- Return type
- 
             Tensor 
 Examples >>> import paddle >>> from paddle.distribution import Geometric >>> geom_p = Geometric(0.5) >>> geom_q = Geometric(0.1) >>> print(geom_p.kl_divergence(geom_q)) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.51082563) 
 - 
            
           log_prob
           (
           value: Tensor
           ) 
            Tensor
           log_prob¶
- 
           Log probability density/mass function. 
 - 
            
           prob
           (
           value: Tensor
           ) 
            Tensor
           prob¶
- 
           Probability density/mass function evaluated at value. - Parameters
- 
             value (Tensor) – value which will be evaluated 
 
 
