isnan¶
- paddle.sparse. isnan ( x, name=None ) [source]
-
Return whether every element of input tensor is NaN or not, requiring x to be a SparseCooTensor or SparseCsrTensor.
- Parameters
-
x (Tensor) – The input tensor (SparseCooTensor or SparseCsrTensor), it’s data type should be float16, float32, float64, int32, int64.
name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
A Sparse Tensor with the same shape as
x
, the bool result which shows every element of x whether it is NaN or not.
Examples
import paddle import numpy as np format = "coo" np_x = np.asarray([[[0., 0], [1., 2.]], [[0., 0], [3., float('nan')]]]) dense_x = paddle.to_tensor(np_x) if format == "coo": sparse_x = dense_x.to_sparse_coo(len(np_x.shape)) else: sparse_x = dense_x.to_sparse_csr() sparse_out = paddle.sparse.isnan(sparse_x) print(sparse_out) # Tensor(shape=[2, 2, 2], dtype=paddle.bool, place=Place(gpu:0), stop_gradient=True, # indices=[[0, 0, 1, 1], # [1, 1, 1, 1], # [0, 1, 0, 1]], # values=[False, False, False, True ])