matmul
- paddle.sparse. matmul ( x: Tensor, y: Tensor, name: str | None = None ) Tensor [source]
- 
         Note This API is only supported from CUDA 11.0.Applies matrix multiplication of two Tensors. The supported input/output Tensor type are as follows: Note x[SparseCsrTensor] @ y[SparseCsrTensor] -> out[SparseCsrTensor] x[SparseCsrTensor] @ y[DenseTensor] -> out[DenseTensor] x[SparseCooTensor] @ y[SparseCooTensor] -> out[SparseCooTensor] x[SparseCooTensor] @ y[DenseTensor] -> out[DenseTensor] It supports backward propagation. Dimensions x and y must be >= 2D. Automatic broadcasting of Tensor is not supported. the shape of x should be [*, M, K] , and the shape of y should be [*, K, N] , where * is zero or more batch dimensions. - Parameters
- 
           - x (SparseTensor) – The input tensor. It can be SparseCooTensor/SparseCsrTensor. The data type can be float32 or float64. 
- y (SparseTensor|DenseTensor) – The input tensor. It can be SparseCooTensor/SparseCsrTensor/DenseTensor. The data type can be float32 or float64. 
- name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to api_guide_Name. 
 
- Returns
- 
           Determined by x and y . 
- Return type
- 
           SparseTensor|DenseTensor 
 Examples >>> >>> import paddle >>> paddle.device.set_device('gpu') >>> # csr @ dense -> dense >>> crows = [0, 1, 2, 3] >>> cols = [1, 2, 0] >>> values = [1., 2., 3.] >>> csr = paddle.sparse.sparse_csr_tensor(crows, cols, values, [3, 3]) >>> print(csr) Tensor(shape=[3, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, crows=[0, 1, 2, 3], cols=[1, 2, 0], values=[1., 2., 3.]) >>> dense = paddle.ones([3, 2]) >>> out = paddle.sparse.matmul(csr, dense) >>> print(out) Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True, [[1., 1.], [2., 2.], [3., 3.]]) >>> # coo @ dense -> dense >>> indices = [[0, 1, 2], [1, 2, 0]] >>> values = [1., 2., 3.] >>> coo = paddle.sparse.sparse_coo_tensor(indices, values, [3, 3]) >>> print(coo) Tensor(shape=[3, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True, indices=[[0, 1, 2], [1, 2, 0]], values=[1., 2., 3.]) >>> dense = paddle.ones([3, 2]) >>> out = paddle.sparse.matmul(coo, dense) >>> print(out) Tensor(shape=[3, 2], dtype=float32, place=Place(gpu:0), stop_gradient=True, [[1., 1.], [2., 2.], [3., 3.]]) 
