sum¶
- paddle.sparse. sum ( x, axis=None, dtype=None, keepdim=False, name=None ) [source]
-
Computes the sum of sparse tensor elements over the given dimension, requiring x to be a SparseCooTensor or SparseCsrTensor.
- Parameters
-
x (Tensor) – An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
axis (int|list|tuple, optional) – The dimensions along which the sum is performed. If
None
, sum all elements ofx
and return a Tensor with a single element, otherwise must be in the range \([-rank(x), rank(x))\). If \(axis[i] < 0\), the dimension to reduce is \(rank + axis[i]\).dtype (str, optional) – The dtype of output Tensor. The default value is None, the dtype of output is the same as input Tensor x.
keepdim (bool, optional) – Whether to reserve the reduced dimension in the output Tensor. The result Tensor will have one fewer dimension than the
x
unlesskeepdim
is true, default value is False.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to Name.
- Returns
-
Results of summation operation on the specified axis of input Tensor x. if x.dtype=’bool’ or x.dtype=’int32’, it’s data type is ‘int64’, otherwise it’s data type is the same as x.
- Return type
-
Tensor
Examples
import paddle dense_x = paddle.to_tensor([[-2., 0.], [1., 2.]]) sparse_x = dense_x.to_sparse_coo(1) out1 = paddle.sparse.sum(sparse_x) # [1.] out2 = paddle.sparse.sum(sparse_x, axis=0) # [-1., 2.] out3 = paddle.sparse.sum(sparse_x, axis=-1) # [-2., 3.] out4 = paddle.sparse.sum(sparse_x, axis=1, keepdim=True) # [[-2.], [3.]]