paddle.sparse. sparse_coo_tensor ( indices, values, shape=None, dtype=None, place=None, stop_gradient=True ) [source]

Constructs a sparse paddle.Tensor in coordinate format according to the indices and values of the specified non-zero elements.

  • indices (list|tuple|ndarray|Tensor) – the indices of non-zero elements. Can be a list, tuple, numpy.ndarray, paddle.Tensor. The indices must be 2-D.

  • values (list|tuple|ndarray|Tensor) – Initial values for the tensor. Can be a scalar, list, tuple, numpy.ndarray, paddle.Tensor.

  • shape (list|tuple, optional) – The shape of the sparse tensor also represents the shape of original dense tensor. If not provided the smallest shape will be inferred to hold all elements.

  • dtype (str|np.dtype, optional) – The desired data type of returned tensor. Can be ‘bool’ , ‘float16’ , ‘float32’ , ‘float64’ , ‘int8’ , ‘int16’ , ‘int32’ , ‘int64’ , ‘uint8’, ‘complex64’ , ‘complex128’. Default: None, infers dtype from data except for python float number which gets dtype from get_default_type .

  • place (CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional) – The place to allocate Tensor. Can be CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If place is string, It can be cpu, gpu:x and gpu_pinned, where x is the index of the GPUs.

  • stop_gradient (bool, optional) – Whether to block the gradient propagation of Autograd. Default: True.


A Tensor constructed from indices and values .

Return type


  • TypeError – If the data type of values is not list, tuple, numpy.ndarray, paddle.Tensor

  • ValueError – If values is tuple|list, it can’t contain nested tuple|list with different lengths , such as: [[1, 2], [3, 4, 5]]. If the indices is not a 2-D.

  • TypeError – If dtype is not bool, float16, float32, float64, int8, int16, int32, int64, uint8, complex64, complex128

  • ValueError – If place is not paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace or specified pattern string.


import paddle
from paddle.fluid.framework import _test_eager_guard

with _test_eager_guard():
    indices = [[0, 1, 2], [1, 2, 0]]
    values = [1.0, 2.0, 3.0]
    dense_shape = [2, 3]
    coo = paddle.sparse.sparse_coo_tensor(indices, values, dense_shape)
    # print(coo)
    # Tensor(shape=[2, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
    #       indices=[[0, 1, 2],
    #                [1, 2, 0]],
    #       values=[1., 2., 3.])