googlenet
- paddle.vision.models. googlenet ( pretrained: bool = False, **kwargs: Unpack[_GoogLeNetOptions] ) GoogLeNet [source]
- 
         GoogLeNet (Inception v1) model architecture from “Going Deeper with Convolutions”. - Parameters
- 
           - pretrained (bool, optional) – Whether to load pre-trained weights. If True, returns a model pre-trained on ImageNet. Default: False. 
- **kwargs (optional) – Additional keyword arguments. For details, please refer to GoogLeNet. 
 
- Returns
- 
           Layer. An instance of GoogLeNet (Inception v1) model. 
 Examples >>> import paddle >>> from paddle.vision.models import googlenet >>> # Build model >>> model = googlenet() >>> # Build model and load imagenet pretrained weight >>> # model = googlenet(pretrained=True) >>> x = paddle.rand([1, 3, 224, 224]) >>> out, out1, out2 = model(x) >>> print(out.shape, out1.shape, out2.shape) [1, 1000] [1, 1000] [1, 1000] 
