L2Decay

paddle.regularizer. L2Decay ( coeff=0.0 ) [源代码]

L2Decay实现L2权重衰减正则化,用于模型训练,有助于防止模型对训练数据过拟合。

该类生成的实例对象,需要设置在 cn_api_paddle_ParamAttr 或者 optimizer (例如 Momentum )中,在 ParamAttr 中设置时, 只对该网络层中的参数生效;在 optimizer 中设置时,会对所有的参数生效;如果同时设置, 在 ParamAttr 中设置的优先级会高于在 optimizer 中设置,即,对于一个可训练的参数,如果在 ParamAttr 中定义了正则化,那么会忽略 optimizer 中的正则化;否则会使用 ``optimizer``中的 正则化。

具体实现中,L2权重衰减正则化的损失函数计算如下:

\[\begin{split}\\loss = 0.5 * coeff * reduce\_sum(square(x))\\\end{split}\]
参数:
  • coeff (float) – 正则化系数,默认值为0.0。

代码示例1

# Example1: set Regularizer in optimizer
import paddle
from paddle.regularizer import L2Decay
import numpy as np
linear = paddle.nn.Linear(10, 10)
inp = paddle.rand(shape=[10, 10], dtype="float32")
out = linear(inp)
loss = paddle.mean(out)
beta1 = paddle.to_tensor([0.9], dtype="float32")
beta2 = paddle.to_tensor([0.99], dtype="float32")
momentum = paddle.optimizer.Momentum(
    learning_rate=0.1,
    parameters=linear.parameters(),
    weight_decay=L2Decay(0.0001))
back = out.backward()
momentum.step()
momentum.clear_grad()

代码示例2

# Example2: set Regularizer in parameters
# Set L2 regularization in parameters.
# Global regularizer does not take effect on my_conv2d for this case.
from paddle.nn import Conv2D
from paddle import ParamAttr
from paddle.regularizer import L2Decay

my_conv2d = Conv2D(
        in_channels=10,
        out_channels=10,
        kernel_size=1,
        stride=1,
        padding=0,
        weight_attr=ParamAttr(regularizer=L2Decay(coeff=0.01)),
        bias_attr=False)

使用本API的教程文档