Softmax2D
- class paddle.nn. Softmax2D ( name: Optional[str] = None ) [source]
- 
         Softmax2D Activation. Given a Tensor with shape (B, C, H, W) or (C, H, W), it will apply Softmax to each location (C, h_i, w_j). The sum of result in each location (C, H_i, W_j) will be one. - Shape:
- 
           - Input: \((B, C, H, W)\) or \((C, H, W)\) 
- Output: \((B, C, H, W)\) or \((C, H, W)\) (same as input) 
 
 - Returns
- 
           A Tensor of the same shape and dtype as input with value in range [0, 1]. 
 Examples >>> import paddle >>> paddle.seed(100) >>> x = paddle.rand([1, 2, 3, 4]) >>> m = paddle.nn.Softmax2D() >>> out = m(x) >>> print(out) Tensor(shape=[1, 2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True, [[[[0.42608523, 0.32081410, 0.39483935, 0.55642301], [0.38131708, 0.45118359, 0.44891062, 0.46053308], [0.35746980, 0.60766530, 0.38638926, 0.70425135]], [[0.57391477, 0.67918587, 0.60516071, 0.44357699], [0.61868292, 0.54881644, 0.55108935, 0.53946698], [0.64253020, 0.39233473, 0.61361068, 0.29574865]]]]) - 
            
           forward
           (
           x: Tensor
           ) 
            Tensor
           forward¶
- 
           Defines the computation performed at every call. Should be overridden by all subclasses. - Parameters
- 
             - *inputs (tuple) – unpacked tuple arguments 
- **kwargs (dict) – unpacked dict arguments 
 
 
 - 
            
           extra_repr
           (
           ) 
            str
           extra_repr¶
- 
           Extra representation of this layer, you can have custom implementation of your own layer. 
 
