Softplus
- class paddle.nn. Softplus ( beta: float = 1, threshold: float = 20, name: Optional[str] = None ) [source]
- 
         Softplus Activation \[\begin{split}softplus(x)=\begin{cases} \frac{1}{\beta} * \log(1 + e^{\beta * x}),&x\leqslant\frac{\varepsilon}{\beta};\\ x,&x>\frac{\varepsilon}{\beta}. \end{cases}\end{split}\]- Parameters
- 
           - beta (float, optional) – The value of \(\beta\) for Softplus. Default is 1 
- threshold (float, optional) – The value of \(\varepsilon\) for Softplus. Default is 20 
- name (str|None, optional) – For details, please refer to api_guide_Name. Generally, no setting is required. Default: None. 
 
 - Shape:
- 
           - input: Tensor with any shape. 
- output: Tensor with the same shape as input. 
 
 Examples >>> import paddle >>> x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3], dtype='float32') >>> m = paddle.nn.Softplus() >>> out = m(x) >>> print(out) Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True, [0.51301527, 0.59813893, 0.74439669, 0.85435522]) - 
            
           forward
           (
           x: Tensor
           ) 
            Tensor
           forward¶
- 
           Defines the computation performed at every call. Should be overridden by all subclasses. - Parameters
- 
             - *inputs (tuple) – unpacked tuple arguments 
- **kwargs (dict) – unpacked dict arguments 
 
 
 - 
            
           extra_repr
           (
           ) 
            str
           extra_repr¶
- 
           Extra representation of this layer, you can have custom implementation of your own layer. 
 
