L1Loss
- class paddle.nn. L1Loss ( reduction: _ReduceMode = 'mean', name: str | None = None ) [source]
- 
         Construct a callable object of the L1Lossclass. The L1Loss layer calculates the L1 Loss ofinputandlabelas follows.If reduction set to 'none', the loss is:\[Out = \lvert input - label\rvert\]If reduction set to 'mean', the loss is:\[Out = MEAN(\lvert input - label\rvert)\]If reduction set to 'sum', the loss is:\[Out = SUM(\lvert input - label\rvert)\]- Parameters
- 
           - reduction (str, optional) – Indicate the reduction to apply to the loss, the candidates are - 'none'|- 'mean'|- 'sum'. If reduction is- 'none', the unreduced loss is returned; If reduction is- 'mean', the reduced mean loss is returned. If reduction is- 'sum', the reduced sum loss is returned. Default is- 'mean'.
- name (str|None, optional) – Name for the operation (optional, default is None). For more information, please refer to api_guide_Name. 
 
 - Shape:
- 
           - input (Tensor): The input tensor. The shapes is - [N, *], where N is batch size and * means any number of additional dimensions. It’s data type should be float32, float64, int32, int64.
- label (Tensor): label. The shapes is - [N, *], same shape as- input. It’s data type should be float32, float64, int32, int64.
- output (Tensor): The L1 Loss of - inputand- label. If reduction is- 'none', the shape of output loss is- [N, *], the same as- input. If reduction is- 'mean'or- 'sum', the shape of output loss is [].
 
 Examples >>> import paddle >>> input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]]) >>> label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]]) >>> l1_loss = paddle.nn.L1Loss() >>> output = l1_loss(input, label) >>> print(output) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.34999999) >>> l1_loss = paddle.nn.L1Loss(reduction='sum') >>> output = l1_loss(input, label) >>> print(output) Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 1.39999998) >>> l1_loss = paddle.nn.L1Loss(reduction='none') >>> output = l1_loss(input, label) >>> print(output) Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True, [[0.20000005, 0.19999999], [0.20000000, 0.79999995]]) - 
            
           forward
           (
           input: Tensor, 
           label: Tensor
           ) 
            Tensor
           forward¶
- 
           Defines the computation performed at every call. Should be overridden by all subclasses. - Parameters
- 
             - *inputs (tuple) – unpacked tuple arguments 
- **kwargs (dict) – unpacked dict arguments 
 
 
 
