set_
- paddle.Tensor. set_ ( x: paddle.Tensor, source: paddle.Tensor | None = None, shape: Sequence[int] | None = None, stride: Sequence[int] | None = None, offset: int = 0, name: str | None = None ) paddle.Tensor
- 
         set x with specified source Tensor’s underlying storage, shape, stride and offset. Note that the xwill share the same data withsourceTensor.- Parameters
- 
           - x (Tensor) – An arbitrary Tensor. The data type supports - bfloat16,- float16,- float32,- float64,- bool,- int8,- int16,- int32,- int64,- uint8,- complex64or- complex128.
- source (Tensor|None, optional) – Define the target Tensor to use. The data type supports bfloat16, - float16,- float32,- float64,- bool,- int8,- int16,- int32,- int64,- uint8,- complex64or- complex128. Default: None, which means to set- xwith an empty source tensor.
- shape (list|tuple|None, optional) – Define the target shape. Each element of it should be integer. Default: None, which means it will use the specified - source’s shape as default value.
- stride (list|tuple|None, optional) – Define the target stride. Each element of it should be integer. Default: None, and when - shapeis also None, it will use the specified- source’s stride as default value; when- shapeis specified, it will use the default stride corresponding to the specified- shape.
- offset (int, optional) – Define the target offset from x’s holder. Default: 0. 
- name (str|None, optional) – Name for the operation (optional, default is None). For more information, please refer to api_guide_Name. 
 
- Returns
- 
           Tensor, the Tensor with the same data type as x.
 Examples >>> import paddle >>> src = paddle.to_tensor([[11., 22., 33.]]) >>> src2 = paddle.to_tensor([11., 22., 33., 44., 55., 66.]) >>> x = paddle.to_tensor([1., 2., 3., 4., 5.]) >>> x.set_() >>> print(x) Tensor(shape=[0], dtype=float32, place=Place(cpu), stop_gradient=True, []) >>> x = paddle.to_tensor([1., 2., 3., 4., 5.]) >>> x.set_(src) >>> print(x) Tensor(shape=[1, 3], dtype=float32, place=Place(cpu), stop_gradient=True, [[11., 22., 33.]]) >>> print(x._is_shared_buffer_with(src)) True >>> x = paddle.to_tensor([1., 2., 3., 4., 5.]) >>> x.set_(src, shape=[2, 1]) >>> print(x) Tensor(shape=[2, 1], dtype=float32, place=Place(cpu), stop_gradient=True, [[11.], [22.]]) >>> x = paddle.to_tensor([1., 2., 3., 4., 5.]) >>> x.set_(src2, shape=[3], stride=[2]) >>> print(x) Tensor(shape=[3], dtype=float32, place=Place(cpu), stop_gradient=True, [11., 33., 55.]) >>> x = paddle.to_tensor([1., 2., 3., 4., 5.]) >>> x.set_(src2, shape=[5], offset=4) >>> print(x) Tensor(shape=[5], dtype=float32, place=Place(cpu), stop_gradient=True, [22., 33., 44., 55., 66.]) 
