cosine_embedding_loss
- paddle.nn.functional. cosine_embedding_loss ( input1: Tensor, input2: Tensor, label: Tensor, margin: float = 0, reduction: _ReduceMode = 'mean', name: str | None = None ) Tensor [source]
-
Compute the cosine embedding loss of Tensor
input1,input2andlabelas follows.If label = 1, then the loss value can be calculated as follow:
\[Out = 1 - cos(input1, input2)\]If label = -1, then the loss value can be calculated as follow:
\[Out = max(0, cos(input1, input2)) - margin\]- The operator cos can be described as follow:
-
\[cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}\]
- Parameters
-
input1 (Tensor) – tensor with shape: [N, M] or [M], ‘N’ means batch size, which can be 0, ‘M’ means the length of input array. Available dtypes are float32, float64.
input2 (Tensor) – tensor with shape: [N, M] or [M], ‘N’ means batch size, which can be 0, ‘M’ means the length of input array. Available dtypes are float32, float64.
label (Tensor) – tensor with shape: [N] or [1], ‘N’ means the length of input array. The target labels values should be -1 or 1. Available dtypes are int32, int64, float32, float64.
margin (float, optional) – Should be a number from \(-1\) to \(1\), \(0\) to \(0.5\) is suggested. If
marginis missing, the default value is \(0\).reduction (string, optional) – Specifies the reduction to apply to the output:
'none'|'mean'|'sum'.'none': no reduction will be applied,'mean': the sum of the output will be divided by the number of elements in the output'sum': the output will be summed.name (str, optional) – Name for the operation (optional, default is None). For more information, please refer to api_guide_Name.
- Returns
-
-
Tensor, the cosine embedding Loss of Tensor
input1input2andlabel. -
If reduction is
'none', the shape of output loss is [N], the same asinput. If reduction is'mean'or'sum', the shape of output loss is [].
-
Tensor, the cosine embedding Loss of Tensor
Examples
>>> import paddle >>> input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32') >>> input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32') >>> label = paddle.to_tensor([1, -1], 'int64') >>> output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='mean') >>> print(output) # 0.21155193 Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.21155193) >>> output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='sum') >>> print(output) # 0.42310387 Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True, 0.42310387) >>> output = paddle.nn.functional.cosine_embedding_loss(input1, input2, label, margin=0.5, reduction='none') >>> print(output) # [0.42310387, 0. ] Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True, [0.42310387, 0. ])
