Program
- class paddle.static. Program
-
Create Python Program. Program is an abstraction of model structure, divided into computational graphs and weights. The Program has a main block that stores the computational graphs.
A set of Program usually contains startup program and main program. A startup program is set to contain some initial work, eg. initialize the
Parameter, and the main program will contain the network structure and vars for train.A set of Program can be used for test or train, in train program , Paddle will contain all content to build a train network, in test program Paddle will prune some content which is irrelevant to test, eg. backward ops and vars.
- Notes:
-
we have default_startup_program and default_main_program by default, a pair of them will shared the parameters. The default_startup_program only run once to initialize parameters, default_main_program run in every mini batch and adjust the weights.
- Returns
-
An empty Program.
- Return type
-
Program
Examples
>>> import paddle >>> import paddle.static as static >>> paddle.enable_static() >>> main_program = static.Program() >>> startup_program = static.Program() >>> with static.program_guard(main_program=main_program, startup_program=startup_program): ... x = static.data(name="x", shape=[-1, 784], dtype='float32') ... y = static.data(name="y", shape=[-1, 1], dtype='int32') ... z = static.nn.fc(name="fc", x=x, size=10, activation="relu") >>> print("main program is: {}".format(main_program)) >>> print("start up program is: {}".format(startup_program))
-
clone
(
*args,
**kwargs
)
clone¶
-
Overloaded function.
clone(self: paddle.base.libpaddle.pir.Program) -> object
clone(self: paddle.base.libpaddle.pir.Program, arg0: pir::IrMapping) -> object
-
copy_to_block
(
self: paddle.base.libpaddle.pir.Program,
arg0: pir::IrMapping,
arg1: pir::Block
)
None
copy_to_block¶
-
get_all_parameter_values
(
self: paddle.base.libpaddle.pir.Program
)
dict[str, pir::Value]
get_all_parameter_values¶
-
get_output_value_by_name
(
self: paddle.base.libpaddle.pir.Program,
arg0: str
)
pir::Value
get_output_value_by_name¶
-
get_parameter_value_by_name
(
self: paddle.base.libpaddle.pir.Program,
arg0: str
)
pir::Value
get_parameter_value_by_name¶
-
get_value_by_op_id
(
self: paddle.base.libpaddle.pir.Program,
arg0: object
)
list[pir::Value]
get_value_by_op_id¶
-
global_block
(
*args,
**kwargs
)
global_block¶
-
Overloaded function.
global_block(self: paddle.base.libpaddle.pir.Program) -> pir::Block
global_block(self: paddle.base.libpaddle.pir.Program) -> pir::Block
-
global_seed
(
self: paddle.base.libpaddle.pir.Program,
arg0: int
)
None
global_seed¶
-
list_vars
(
self: paddle.base.libpaddle.pir.Program
)
list[pir::Value]
list_vars¶
-
num_ops
(
self: paddle.base.libpaddle.pir.Program
)
int
num_ops¶
-
parameters_num
(
self: paddle.base.libpaddle.pir.Program
)
int
parameters_num¶
-
set_is_test_attr
(
self: paddle.base.libpaddle.pir.Program
)
None
set_is_test_attr¶
-
set_parameters_from
(
self: paddle.base.libpaddle.pir.Program,
arg0: paddle.base.libpaddle.pir.Program
)
None
set_parameters_from¶
-
set_state_dict
(
self: paddle.base.libpaddle.pir.Program,
state_dict: dict[str, paddle.base.libpaddle.DenseTensor],
scope: paddle.base.libpaddle._Scope,
copy_tensor: bool = False
)
None
set_state_dict¶
