Accuracy¶
- class paddle.metric. Accuracy ( topk=(1,), name=None, *args, **kwargs ) [source]
-
Encapsulates accuracy metric logic.
- Parameters
-
topk (list[int]|tuple[int]) – Number of top elements to look at for computing accuracy. Default is (1,).
name (str, optional) – String name of the metric instance. Default is acc.
Examples
>>> import numpy as np >>> import paddle >>> x = paddle.to_tensor(np.array([ ... [0.1, 0.2, 0.3, 0.4], ... [0.1, 0.4, 0.3, 0.2], ... [0.1, 0.2, 0.4, 0.3], ... [0.1, 0.2, 0.3, 0.4]])) >>> y = paddle.to_tensor(np.array([[0], [1], [2], [3]])) >>> m = paddle.metric.Accuracy() >>> correct = m.compute(x, y) >>> m.update(correct) >>> res = m.accumulate() >>> print(res) 0.75
>>> import paddle >>> from paddle.static import InputSpec >>> import paddle.vision.transforms as T >>> from paddle.vision.datasets import MNIST >>> input = InputSpec([None, 1, 28, 28], 'float32', 'image') >>> label = InputSpec([None, 1], 'int64', 'label') >>> transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])]) >>> train_dataset = MNIST(mode='train', transform=transform) >>> model = paddle.Model(paddle.vision.models.LeNet(), input, label) >>> optim = paddle.optimizer.Adam( ... learning_rate=0.001, parameters=model.parameters()) >>> model.prepare( ... optim, ... loss=paddle.nn.CrossEntropyLoss(), ... metrics=paddle.metric.Accuracy()) ... >>> model.fit(train_dataset, batch_size=64)
-
compute
(
pred,
label,
*args
)
compute¶
-
Compute the top-k (maximum value in topk) indices.
- Parameters
-
pred (Tensor) – The predicted value is a Tensor with dtype float32 or float64. Shape is [batch_size, d0, …, dN].
label (Tensor) – The ground truth value is Tensor with dtype int64. Shape is [batch_size, d0, …, 1], or [batch_size, d0, …, num_classes] in one hot representation.
- Returns
-
Correct mask, a tensor with shape [batch_size, d0, …, topk].
- Return type
-
Tensor
-
update
(
correct,
*args
)
update¶
-
Update the metrics states (correct count and total count), in order to calculate cumulative accuracy of all instances. This function also returns the accuracy of current step.
- Parameters
-
correct – Correct mask, a tensor with shape [batch_size, d0, …, topk].
- Returns
-
the accuracy of current step.
- Return type
-
Tensor
-
reset
(
)
reset¶
-
Resets all of the metric state.
-
accumulate
(
)
accumulate¶
-
Computes and returns the accumulated metric.
-
name
(
)
name¶
-
Return name of metric instance.