[ 输入参数用法不一致 ]torch.rand

torch.rand

torch.rand(*size,
           *,
           out=None,
           dtype=None,
           layout=torch.strided,
           device=None,
           requires_grad=False)

paddle.rand

paddle.rand(shape,
            dtype=None,
            name=None)

其中 torch 的 size 和 paddle 的 shape 用法不一致,torch 还支持更多其他参数,具体如下:

参数映射

PyTorch PaddlePaddle 备注
*size shape 表示输出形状大小,PyTorch 以可变参数方式传入,Paddle 以 list 或 tuple 的方式传入。
out - 表示输出的 Tensor,Paddle 无此参数。
dtype dtype 表示数据类型。
layout - 表示布局方式,Paddle 无此参数,一般对网络训练结果影响不大,可直接删除。
device - 表示 Tensor 存放位置,Paddle 无此参数,需要转写。
requires_grad - 表示是否不阻断梯度传导,Paddle 无此参数,需要转写。

转写示例

*size:输出形状大小

# PyTorch 写法
torch.rand(3, 5)

# Paddle 写法
paddle.rand([3, 5])

out:指定输出

# PyTorch 写法
torch.rand([3, 5], out=y)

# Paddle 写法
paddle.assign(paddle.rand([3, 5]), y)

device: Tensor 的设备

# PyTorch 写法
torch.rand(3, 5, device=torch.device('cpu'))

# Paddle 写法
y = paddle.rand([3, 5])
y.cpu()

requires_grad:是否需要求反向梯度,需要修改该 Tensor 的 stop_gradient 属性

# PyTorch 写法
x = torch.rand([3, 5], requires_grad=True)

# Paddle 写法
x = paddle.rand([3, 5])
x.stop_gradient = False