[ 组合替代实现 ]torch.optim.lr_scheduler.MultiStepLR

torch.optim.lr_scheduler.MultiStepLR

torch.optim.lr_scheduler.MultiStepLR(optimizer,
                                milestones,
                                gamma=0.1,
                                last_epoch=-1,
                                verbose=False)

paddle.optimizer.lr.MultiStepDecay

paddle.optimizer.lr.MultiStepDecay(learning_rate,
                                milestones,
                                gamma=0.1,
                                last_epoch=-1,
                                verbose=False)

两者 API 功能一致, 参数用法不一致,PyTorch 是 Scheduler 实例持有 Optimizer 实例,Paddle 是 Optimizer 实例持有 Scheduler 实例。由于持有关系相反,因此 Paddle 使用 Optimizer.set_lr_scheduler 来设置这种持有关系。具体如下:

参数映射

PyTorch PaddlePaddle 备注
optimizer learning_rate PyTorch 的 optimizer 类型是 torch.optim.Optimizer,Paddle 的 learning_rate 类型是 float,两者功能上不直接一致,但可通过设置 leaning_rate = optimizer.get_lr() 来对应一致。
milestones milestones 表示轮数下标列表,必须递增。参数完全一致。
gamma gamma 表示学习率衰减率。参数完全一致。
last_epoch last_epoch 上一轮的轮数,重启训练时设置为上一轮的 epoch 数。参数完全一致。
verbose verbose 如果是 True,则在每一轮更新时在标准输出 stdout 输出一条信息。参数完全一致。

转写示例

# PyTorch 写法
linear = torch.nn.Linear(10, 10)
sgd = torch.optimizer.SGD(lr=0.5, parameters=linear.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer=sgd, milestones=[2,4,6])

# Paddle 写法
linear = paddle.nn.linear(10, 10)
sgd = paddle.optimizer.SGD(learning_rate=0.5, parameters=linear.parameters())
scheduler = paddle.optimizer.lr.MultiStepDecay(learning_rate=sgd.get_lr(), milestones=[2,4,6])
sgd.set_lr_scheduler(scheduler)