DataFeeder

class paddle.fluid.DataFeeder(feed_list, place, program=None)[源代码]

DataFeeder 负责将reader(读取器)返回的数据转成一种特殊的数据结构,使它们可以输入到 ExecutorParallelExecutor 中。 reader通常返回一个minibatch条目列表。在列表中每一条目都是一个样本(sample),它是由具有一至多个特征的列表或元组组成的。

以下是简单用法:

import paddle.fluid as fluid
place = fluid.CPUPlace()
img = fluid.layers.data(name='image', shape=[1, 28, 28])
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
feeder = fluid.DataFeeder([img, label], fluid.CPUPlace())
result = feeder.feed([([0] * 784, [9]), ([1] * 784, [1])])

在多GPU模型训练时,如果需要提前分别向各GPU输入数据,可以使用 decorate_reader 函数。

import paddle
import paddle.fluid as fluid

place=fluid.CUDAPlace(0)
data = fluid.layers.data(name='data', shape=[3, 224, 224], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')

feeder = fluid.DataFeeder(place=place, feed_list=[data, label])
reader = feeder.decorate_reader(
      paddle.batch(paddle.dataset.flowers.train(), batch_size=16), multi_devices=False)
参数:
  • feed_list (list) – 向模型输入的变量表或者变量表名
  • place (Place) – place表明是向GPU还是CPU中输入数据。如果想向GPU中输入数据, 请使用 fluid.CUDAPlace(i) (i 代表 the GPU id);如果向CPU中输入数据, 请使用 fluid.CPUPlace()
  • program (Program) – 需要向其中输入数据的Program。如果为None, 会默认使用 default_main_program()。 缺省值为None
抛出异常:
  • ValueError – 如果一些变量不在此 Program 中

代码示例

import numpy as np
import paddle
import paddle.fluid as fluid

place = fluid.CPUPlace()

def reader():
    yield [np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32')],

main_program = fluid.Program()
startup_program = fluid.Program()

with fluid.program_guard(main_program, startup_program):
      data_1 = fluid.layers.data(name='data_1', shape=[1, 2, 2])
      data_2 = fluid.layers.data(name='data_2', shape=[1, 1, 3])
      out = fluid.layers.fc(input=[data_1, data_2], size=2)
      # ...

feeder = fluid.DataFeeder([data_1, data_2], place)

exe = fluid.Executor(place)
exe.run(startup_program)
for data in reader():
    outs = exe.run(program=main_program,
                   feed=feeder.feed(data),
                   fetch_list=[out])
feed(iterable)

根据feed_list(数据输入表)和iterable(可遍历的数据)提供的信息,将输入数据转成一种特殊的数据结构,使它们可以输入到 ExecutorParallelExecutor 中。

参数:
  • iterable (list|tuple) – 要输入的数据

返回: 转换结果

返回类型: dict

代码示例

import numpy.random as random
import paddle.fluid as fluid

def reader(limit=5):
    for i in range(limit):
        yield random.random([784]).astype('float32'), random.random([1]).astype('int64'), random.random([256]).astype('float32')

data_1 = fluid.layers.data(name='data_1', shape=[1, 28, 28])
data_2 = fluid.layers.data(name='data_2', shape=[1], dtype='int64')
data_3 = fluid.layers.data(name='data_3', shape=[16, 16], dtype='float32')
feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())

result = feeder.feed(reader())
feed_parallel(iterable, num_places=None)

该方法获取的多个minibatch,并把每个minibatch提前输入进各个设备中。

参数:
  • iterable (list|tuple) – 要输入的数据
  • num_places (int) – 设备数目。默认为None。

返回: 转换结果

返回类型: dict

注解

设备(CPU或GPU)的数目必须等于minibatch的数目

代码示例

import numpy.random as random
import paddle.fluid as fluid

def reader(limit=10):
    for i in range(limit):
        yield [random.random([784]).astype('float32'), random.random([1]).astype('float32')],

x = fluid.layers.data(name='x', shape=[1, 28, 28])
y = fluid.layers.data(name='y', shape=[1], dtype='float32')

fluid.layers.elementwise_add(x, y)

feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
place_num = 2
places = [fluid.CPUPlace() for x in range(place_num)]
data = []
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
for item in reader():
    data.append(item)
    if place_num == len(data):
        exe.run(program=program, feed=list(feeder.feed_parallel(data, place_num)), fetch_list=[])
        data = []
decorate_reader(reader, multi_devices, num_places=None, drop_last=True)

将reader返回的输入数据batch转换为多个mini-batch,之后每个mini-batch都会被输入进各个设备(CPU或GPU)中。

参数:
  • reader (fun) – 该参数是一个可以生成数据的函数
  • multi_devices (bool) – bool型,指明是否使用多个设备
  • num_places (int) – 如果 multi_devicesTrue , 可以使用此参数来设置GPU数目。如果 multi_devicesNone ,该函数默认使用当前训练机所有GPU设备。默认为None。
  • drop_last (bool) – 如果最后一个batch的大小比 batch_size 要小,则可使用该参数来指明是否选择丢弃最后一个batch数据。 默认为 True

返回:转换结果

返回类型: dict

抛出异常: ValueError – 如果 drop_last 值为False并且data batch与设备不匹配时,产生此异常

代码示例

import numpy.random as random
import paddle
import paddle.fluid as fluid

def reader(limit=5):
    for i in range(limit):
        yield (random.random([784]).astype('float32'), random.random([1]).astype('int64')),

place=fluid.CPUPlace()
data = fluid.layers.data(name='data', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')

feeder = fluid.DataFeeder(place=place, feed_list=[data, label])
reader = feeder.decorate_reader(reader, multi_devices=False)

exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for data in reader():
    exe.run(feed=data)