VisualDL¶
- class paddle.callbacks. VisualDL ( log_dir ) [source]
- 
         VisualDL callback function. - Parameters
- 
           log_dir (str) – The directory to save visualdl log file. 
 Examples import paddle import paddle.vision.transforms as T from paddle.static import InputSpec inputs = [InputSpec([-1, 1, 28, 28], 'float32', 'image')] labels = [InputSpec([None, 1], 'int64', 'label')] transform = T.Compose([ T.Transpose(), T.Normalize([127.5], [127.5]) ]) train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform) eval_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform) net = paddle.vision.models.LeNet() model = paddle.Model(net, inputs, labels) optim = paddle.optimizer.Adam(0.001, parameters=net.parameters()) model.prepare(optimizer=optim, loss=paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy()) ## uncomment following lines to fit model with visualdl callback function # callback = paddle.callbacks.VisualDL(log_dir='visualdl_log_dir') # model.fit(train_dataset, eval_dataset, batch_size=64, callbacks=callback) - 
            
           on_train_begin
           (
           logs=None
           )
           on_train_begin¶
- 
           Called at the start of training. - Parameters
- 
             logs (dict) – The logs is a dict or None. 
 
 - 
            
           on_epoch_begin
           (
           epoch=None, 
           logs=None
           )
           on_epoch_begin¶
- 
           Called at the beginning of each epoch. - Parameters
- 
             - epoch (int) – The index of epoch. 
- logs (dict) – The logs is a dict or None. The logs passed by paddle.Model is None. 
 
 
 - 
            
           on_train_batch_end
           (
           step, 
           logs=None
           )
           on_train_batch_end¶
- 
           Called at the end of each batch in training. - Parameters
- 
             - step (int) – The index of step (or iteration). 
- logs (dict) – The logs is a dict or None. The logs passed by paddle.Model is a dict, contains ‘loss’, metrics and ‘batch_size’ of current batch. 
 
 
 - 
            
           on_eval_begin
           (
           logs=None
           )
           on_eval_begin¶
- 
           Called at the start of evaluation. - Parameters
- 
             logs (dict) – The logs is a dict or None. The keys of logs passed by paddle.Model contains ‘steps’ and ‘metrics’, The steps is number of total steps of validation dataset. The metrics is a list of str including ‘loss’ and the names of paddle.metric.Metric. 
 
 - 
            
           on_train_end
           (
           logs=None
           )
           on_train_end¶
- 
           Called at the end of training. - Parameters
- 
             logs (dict) – The logs is a dict or None. The keys of logs passed by paddle.Model contains ‘loss’, metric names and batch_size. 
 
 - 
            
           on_eval_end
           (
           logs=None
           )
           on_eval_end¶
- 
           Called at the end of evaluation. - Parameters
- 
             logs (dict) – The logs is a dict or None. The logs passed by paddle.Model is a dict contains ‘loss’, metrics and ‘batch_size’ of last batch of validation dataset. 
 
 
