prior_box¶
- paddle.vision.ops. prior_box ( input, image, min_sizes, max_sizes=None, aspect_ratios=[1.0], variance=[0.1, 0.1, 0.2, 0.2], flip=False, clip=False, steps=[0.0, 0.0], offset=0.5, min_max_aspect_ratios_order=False, name=None ) [source]
- 
         This op generates prior boxes for SSD(Single Shot MultiBox Detector) algorithm. Each position of the input produce N prior boxes, N is determined by the count of min_sizes, max_sizes and aspect_ratios, The size of the box is in range(min_size, max_size) interval, which is generated in sequence according to the aspect_ratios. - Parameters
- 
           - input (Tensor) – 4-D tensor(NCHW), the data type should be float32 or float64. 
- image (Tensor) – 4-D tensor(NCHW), the input image data of PriorBoxOp, the data type should be float32 or float64. 
- min_sizes (list|tuple|float) – the min sizes of generated prior boxes. 
- max_sizes (list|tuple|None, optional) – the max sizes of generated prior boxes. Default: None. 
- aspect_ratios (list|tuple|float, optional) – the aspect ratios of generated prior boxes. Default: [1.]. 
- variance (list|tuple, optional) – the variances to be encoded in prior boxes. Default:[0.1, 0.1, 0.2, 0.2]. 
- flip (bool) – Whether to flip aspect ratios. Default:False. 
- clip (bool) – Whether to clip out-of-boundary boxes. Default: False. 
- steps (list|tuple, optional) – Prior boxes steps across width and height, If steps[0] equals to 0.0 or steps[1] equals to 0.0, the prior boxes steps across height or weight of the input will be automatically calculated. Default: [0., 0.] 
- offset (float, optional)) – Prior boxes center offset. Default: 0.5 
- min_max_aspect_ratios_order (bool, optional) – If set True, the output prior box is in order of [min, max, aspect_ratios], which is consistent with Caffe. Please note, this order affects the weights order of convolution layer followed by and does not affect the final detection results. Default: False. 
- name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name 
 
- Returns
- 
           
           - the output prior boxes and the expanded variances of PriorBox.
- 
             The prior boxes is a 4-D tensor, the layout is [H, W, num_priors, 4], num_priors is the total box count of each position of input. The expanded variances is a 4-D tensor, same shape as the prior boxes. 
 
- Return type
- 
           Tensor 
 Examples import paddle input = paddle.rand((1, 3, 6, 9), dtype=paddle.float32) image = paddle.rand((1, 3, 9, 12), dtype=paddle.float32) box, var = paddle.vision.ops.prior_box( input=input, image=image, min_sizes=[2.0, 4.0], clip=True, flip=True) 
