RoIPool¶
- class paddle.vision.ops. RoIPool ( output_size, spatial_scale=1.0 ) [source]
- 
         This interface is used to construct a callable object of the RoIPool class. Please refer to roi_pool. - Parameters
- 
           - output_size (int or tuple[int, int]) – the pooled output size(h, w), data type is int32. If int, h and w are both equal to output_size. 
- spatial_scale (float, optional) – multiplicative spatial scale factor to translate ROI coords from their input scale to the scale used when pooling. Default: 1.0. 
 
- Returns
- 
           the pooled feature, 4D-Tensor with the shape of [num_boxes, C, output_size[0], output_size[1]]. 
- Return type
- 
           pool_out (Tensor) 
 Examples import paddle from paddle.vision.ops import RoIPool data = paddle.rand([1, 256, 32, 32]) boxes = paddle.rand([3, 4]) boxes[:, 2] += boxes[:, 0] + 3 boxes[:, 3] += boxes[:, 1] + 4 boxes_num = paddle.to_tensor([3]).astype('int32') roi_pool = RoIPool(output_size=(4, 3)) pool_out = roi_pool(data, boxes, boxes_num) assert pool_out.shape == [3, 256, 4, 3], '' - 
            
           forward
           (
           x, 
           boxes, 
           boxes_num
           )
           forward¶
- 
           Defines the computation performed at every call. Should be overridden by all subclasses. - Parameters
- 
             - *inputs (tuple) – unpacked tuple arguments 
- **kwargs (dict) – unpacked dict arguments 
 
 
 - 
            
           extra_repr
           (
           )
           extra_repr¶
- 
           Extra representation of this layer, you can have custom implementation of your own layer. 
 
