mse_loss¶
- paddle.fluid.layers.loss. mse_loss ( input, label ) [source]
- 
         This op accepts input predications and target label and returns the mean square error. The loss can be described as: \[Out = MEAN((input - label)^2)\]- Parameters
- 
           - input (Tensor) – Input tensor, the data type should be float32. 
- label (Tensor) – Label tensor, the data type should be float32. 
 
- Returns
- 
           The tensor storing the mean square error difference of input and label. 
- Return type
- 
           Tensor 
 Return type: Tensor. Examples import paddle input = paddle.to_tensor([1.1, 1.9]) label = paddle.to_tensor([1.0, 2.0]) output = paddle.fluid.layers.mse_loss(input, label) print(output.numpy()) # [0.01] 
