ShuffleNetV2¶
- class paddle.vision.models. ShuffleNetV2 ( scale=1.0, act='relu', num_classes=1000, with_pool=True ) [source]
- 
         ShuffleNetV2 model from “ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design”. - Parameters
- 
           - scale (float, optional) – Scale of output channels. Default: True. 
- act (str, optional) – Activation function of neural network. Default: “relu”. 
- num_classes (int, optional) – Output dim of last fc layer. If num_classes <= 0, last fc layer will not be defined. Default: 1000. 
- with_pool (bool, optional) – Use pool before the last fc layer or not. Default: True. 
 
- Returns
- 
           Layer. An instance of ShuffleNetV2 model. 
 Examples import paddle from paddle.vision.models import ShuffleNetV2 shufflenet_v2_swish = ShuffleNetV2(scale=1.0, act="swish") x = paddle.rand([1, 3, 224, 224]) out = shufflenet_v2_swish(x) print(out.shape) # [1, 1000] - 
            
           forward
           (
           inputs
           )
           forward¶
- 
           Defines the computation performed at every call. Should be overridden by all subclasses. - Parameters
- 
             - *inputs (tuple) – unpacked tuple arguments 
- **kwargs (dict) – unpacked dict arguments 
 
 
 
