eig¶
- paddle.linalg. eig ( x, name=None ) [source]
- 
         Performs the eigenvalue decomposition of a square matrix or a batch of square matrices. Note - If the matrix is a Hermitian or a real symmetric matrix, please use paddle.linalg.eigh instead, which is much faster. 
- If only eigenvalues is needed, please use paddle.linalg.eigvals instead. 
- If the matrix is of any shape, please use paddle.linalg.svd. 
- This API is only supported on CPU device. 
- The output datatype is always complex for both real and complex input. 
 - Parameters
- 
           - x (Tensor) – A tensor with shape math:[*, N, N], The data type of the x should be one of - float32,- float64,- compplex64or- complex128.
- name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name. 
 
- Returns
- 
           A tensor with shape math:[*, N] refers to the eigen values. Eigenvectors(Tensors): A tensor with shape math:[*, N, N] refers to the eigen vectors. 
- Return type
- 
           Eigenvalues(Tensors) 
 Examples import paddle paddle.device.set_device("cpu") x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543], [9.956216, 8.749598, 6.066444 ], [4.4251957, 1.7983172, 0.370647 ]]) w, v = paddle.linalg.eig(x) print(v) # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False, # [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) , # (0.18518077798279986+0j)], # [(-0.8308237755993192+0j) , (0.3463813401919749+0j) , # (-0.6837005269141947+0j) ], # [(-0.23142567697893396+0j), (0.4944999840400175+0j) , # (0.7058765252952796+0j) ]]) print(w) # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False, # [ (16.50471283351188+0j) , (-5.5034820550763515+0j) , # (-0.21026087843552282+0j)]) 
