Pad¶
- class paddle.vision.transforms. Pad ( padding, fill=0, padding_mode='constant', keys=None ) [source]
- 
         Pads the given CV Image on all sides with the given “pad” value. - Parameters
- 
           - padding (int|list|tuple) – Padding on each border. If a single int is provided this is used to pad all borders. If list/tuple of length 2 is provided this is the padding on left/right and top/bottom respectively. If a list/tuple of length 4 is provided this is the padding for the left, top, right and bottom borders respectively. 
- fill (int|list|tuple) – Pixel fill value for constant fill. Default is 0. If a list/tuple of length 3, it is used to fill R, G, B channels respectively. This value is only used when the padding_mode is constant 
- padding_mode (str) – Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant. - constantmeans pads with a constant value, this value is specified with fill.- edgemeans pads with the last value at the edge of the image.- reflectmeans pads with reflection of image (without repeating the last value on the edge) padding- [1, 2, 3, 4]with 2 elements on both sides in reflect mode will result in- [3, 2, 1, 2, 3, 4, 3, 2].- symmetricmenas pads with reflection of image (repeating the last value on the edge) padding- [1, 2, 3, 4]with 2 elements on both sides in symmetric mode will result in- [2, 1, 1, 2, 3, 4, 4, 3].
- keys (list[str]|tuple[str], optional) – Same as - BaseTransform. Default: None.
 
 - Shape:
- 
           - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C). 
- output(PIL.Image|np.ndarray|Paddle.Tensor): A paded image. 
 
 - Returns
- 
           A callable object of Pad. 
 Examples import numpy as np from PIL import Image from paddle.vision.transforms import Pad transform = Pad(2) fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8)) fake_img = transform(fake_img) print(fake_img.size) 
