Dirichlet¶
- class paddle.distribution. Dirichlet ( concentration ) [source]
- 
         Dirichlet distribution with parameter “concentration”. The Dirichlet distribution is defined over the (k-1)-simplex using a positive, lenght-k vector concentration(k > 1). The Dirichlet is identically the Beta distribution when k = 2. For independent and identically distributed continuous random variable \(\boldsymbol X \in R_k\) , and support \(\boldsymbol X \in (0,1), ||\boldsymbol X|| = 1\) , The probability density function (pdf) is \[f(\boldsymbol X; \boldsymbol \alpha) = \frac{1}{B(\boldsymbol \alpha)} \prod_{i=1}^{k}x_i^{\alpha_i-1}\]where \(\boldsymbol \alpha = {\alpha_1,...,\alpha_k}, k \ge 2\) is parameter, the normalizing constant is the multivariate beta function. \[B(\boldsymbol \alpha) = \frac{\prod_{i=1}^{k} \Gamma(\alpha_i)}{\Gamma(\alpha_0)}\]\(\alpha_0=\sum_{i=1}^{k} \alpha_i\) is the sum of parameters, \(\Gamma(\alpha)\) is gamma function. - Parameters
- 
           concentration (Tensor) – “Concentration” parameter of dirichlet distribution, also called \(\alpha\). When it’s over one dimension, the last axis denotes the parameter of distribution, event_shape=concentration.shape[-1:], axes other than last are condsider batch dimensions withbatch_shape=concentration.shape[:-1].
 Examples import paddle dirichlet = paddle.distribution.Dirichlet(paddle.to_tensor([1., 2., 3.])) print(dirichlet.entropy()) # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [-1.24434423]) print(dirichlet.prob(paddle.to_tensor([.3, .5, .6]))) # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True, # [10.80000114]) - property mean
- 
           Mean of Dirichelt distribution. - Returns
- 
             Mean value of distribution. 
 
 - property variance
- 
           Variance of Dirichlet distribution. - Returns
- 
             Variance value of distribution. 
 
 - 
            
           sample
           (
           shape=()
           )
           sample¶
- 
           Sample from dirichlet distribution. - Parameters
- 
             shape (Sequence[int], optional) – Sample shape. Defaults to empty tuple. 
 
 - 
            
           prob
           (
           value
           )
           prob¶
- 
           Probability density function(PDF) evaluated at value. - Parameters
- 
             value (Tensor) – Value to be evaluated. 
- Returns
- 
             PDF evaluated at value. 
 
 - 
            
           log_prob
           (
           value
           )
           log_prob¶
- 
           Log of probability densitiy function. - Parameters
- 
             value (Tensor) – Value to be evaluated. 
 
 - 
            
           entropy
           (
           )
           entropy¶
- 
           Entropy of Dirichlet distribution. - Returns
- 
             Entropy of distribution. 
 
 - property batch_shape
- 
           Returns batch shape of distribution - Returns
- 
             batch shape 
- Return type
- 
             Sequence[int] 
 
 - property event_shape
- 
           Returns event shape of distribution - Returns
- 
             event shape 
- Return type
- 
             Sequence[int] 
 
 - 
            
           kl_divergence
           (
           other
           )
           [source]
           kl_divergence¶
- 
           The KL-divergence between self distributions and other. 
 - 
            
           probs
           (
           value
           )
           probs¶
- 
           Probability density/mass function. Note This method will be deprecated in the future, please use prob instead. 
 - 
            
           rsample
           (
           shape=()
           )
           rsample¶
- 
           reparameterized sample 
 
