LayerHelperBase¶
- class paddle.fluid.layer_helper_base. LayerHelperBase ( name, layer_type ) [source]
- 
         - 
            
           to_variable
           (
           value, 
           name=None
           )
           to_variable¶
- 
           The API will create a Variableobject from numpy.ndarray or Variable object.- Parameters
- 
             - value (ndarray) – The numpy.ndarray object that needs to be converted, it can be multi-dimension, and the data type is one of numpy.{float16, float32, float64, int16, int32, int64, uint8, uint16}. 
- name (str, optional) – The default value is None. Normally there is no need for user to set this property. For more information, please refer to Name 
 
- Returns
- 
             Tensorcreated from the specified numpy.ndarray object, data type and shape is the same asvalue.
- Return type
- 
             Variable 
 Examples import numpy as np import paddle.fluid as fluid with fluid.dygraph.guard(): x = np.ones([2, 2], np.float32) y = fluid.dygraph.to_variable(x) 
 - 
            
           create_parameter
           (
           attr, 
           shape, 
           dtype=None, 
           is_bias=False, 
           default_initializer=None, 
           stop_gradient=False, 
           type=VarType.LOD_TENSOR
           )
           create_parameter¶
- 
           Create parameters for this layers. - Args:
- 
               attr: [ParamAttr] should be the parameter attribute for this parameter shape: shape of the parameter dtype: data type of this parameter is_bias: if this is a bias parameter default_initializer: set the default initializer for this parameter 
 Returns created parameter Variable. 
 - 
            
           create_variable_for_type_inference
           (
           dtype, 
           stop_gradient=False, 
           shape=None
           )
           create_variable_for_type_inference¶
- 
           Create a temporary variable that should be type inferred layer. Note The default type will be set to LOD_TENSOR. However, when the var is used as operator output, its type will be updated based on operator’s VarTypeInference implementation in infer_var_type. 
 - 
            
           create_sparse_variable_for_type_inference
           (
           dtype, 
           stop_gradient=False, 
           shape=None
           )
           create_sparse_variable_for_type_inference¶
- 
           Create a temporary sparse variable that should be type inferred layer. Note The default type will be set to SPARSE_COO. However, when the var is used as operator output, its type will be updated based on operator’s VarTypeInference implementation in infer_var_type. 
 - 
            
           create_variable
           (
           *args, 
           **kwargs
           )
           create_variable¶
- 
           Create Variable for this layers. Returns created Variable. 
 - 
            
           create_global_variable
           (
           persistable=False, 
           *args, 
           **kwargs
           )
           create_global_variable¶
- 
           create global variable, note that there is no initializer for this global variable. :param persistable: True if it is a checkpoint value. :type persistable: bool :param *args: See create_var’s documentation :param **kwargs: See create_var’s documentation Returns(Variable): the created variable. 
 - 
            
           create_or_get_global_variable
           (
           name, 
           *args, 
           **kwargs
           )
           create_or_get_global_variable¶
- 
           Creates a global variable if not exists and returns the variable and a boolean flag which is true when it is a new variable. 
 - 
            
           set_variable_initializer
           (
           var, 
           initializer
           )
           set_variable_initializer¶
- 
           Set target Variable’s initializer - Parameters
- 
             - var – target Variable 
- initializer – initializer to use 
 
 
 
- 
            
           to_variable
           (
           value, 
           name=None
           )
           
