MaxUnPool3D¶
- class paddle.nn. MaxUnPool3D ( kernel_size, stride=None, padding=0, data_format='NCDHW', output_size=None, name=None ) [source]
- 
         This API implements max unpooling 3d opereation. max_unpool3d accepts the output of max_pool3d as input, including the indices of the maximum value and calculate the partial inverse. All non-maximum values are set to zero. - Input: \((N, C, D_{in}, H_{in}, W_{in})\) 
- Output: \((N, C, D_{out}, H_{out}, W_{out})\), where 
 \[D_{out} = (D_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size[0]\]\[H_{out} = (H_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size[1]\]\[W_{out} = (W_{in} - 1) * stride[2] - 2 * padding[2] + kernel\_size[2]\]or as given by output_sizein the call operator- Parameters
- 
           - kernel_size (int|list|tuple) – The unpool kernel size. If unpool kernel size is a tuple or list, it must contain an integer. 
- stride (int|list|tuple) – The unpool stride size. If unpool stride size is a tuple or list, it must contain an integer. 
- padding (int | tuple) – Padding that was added to the input. 
- output_size (list|tuple, optional) – The target output size. If output_size is not specified, the actual output shape will be automatically calculated by (input_shape, kernel_size, stride, padding). 
- data_format (string) – The data format of the input and output data. The default is “NCDHW”. When it is “NCDHW”, the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width]. 
- name (str, optional) – For detailed information, please refer to Name. Usually name is no need to set and None by default. 
 
- Returns
- 
           A callable object of MaxUnPool3D. 
 Examples import paddle import paddle.nn.functional as F data = paddle.rand(shape=[1, 1, 4, 4, 6]) pool_out, indices = F.max_pool3d(data, kernel_size=2, stride=2, padding=0, return_mask=True) # pool_out shape: [1, 1, 2, 2, 3], indices shape: [1, 1, 2, 2, 3] Unpool3D = paddle.nn.MaxUnPool3D(kernel_size=2, padding=0) unpool_out = Unpool3D(pool_out, indices) # unpool_out shape: [1, 1, 4, 4, 6] - 
            
           forward
           (
           x, 
           indices
           )
           forward¶
- 
           Defines the computation performed at every call. Should be overridden by all subclasses. - Parameters
- 
             - *inputs (tuple) – unpacked tuple arguments 
- **kwargs (dict) – unpacked dict arguments 
 
 
 - 
            
           extra_repr
           (
           )
           extra_repr¶
- 
           Extra representation of this layer, you can have custom implementation of your own layer. 
 
