corrcoef¶
- paddle.linalg. corrcoef ( x, rowvar=True, name=None ) [source]
- 
         A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix. For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself. The relationship between the correlation coefficient matrix R and the covariance matrix C, is \[R_{ij} = \frac{ C_{ij} } { \sqrt{ C_{ii} * C_{jj} } }\]The values of R are between -1 and 1. - Parameters
- 
           - x (Tensor) – A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below. 
- rowvar (Bool, optional) – If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True. 
- name (str, optional) – Name of the output. Default is None. It’s used to print debug info for developers. Details: Name. 
 
- Returns
- 
           The correlation coefficient matrix of the variables. 
 Examples import paddle xt = paddle.rand((3,4)) print(paddle.linalg.corrcoef(xt)) # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True, # [[ 1. , -0.73702252, 0.66228950], # [-0.73702258, 1. , -0.77104872], # [ 0.66228974, -0.77104825, 1. ]]) 
